Exact density matrix elements for a driven dissipative system described by a quadratic Hamiltonian

被引:1
作者
Saedi, Sh [1 ]
Kheirandish, F. [1 ]
机构
[1] Univ Kurdistan, Dept Phys, POB 66177-15175, Sanandaj, Iran
关键词
COHERENT STATES; BROWNIAN-MOTION; QUANTUM;
D O I
10.1038/s41598-021-96787-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For a prototype quadratic Hamiltonian describing a driven, dissipative system, exact matrix elements of the reduced density matrix are obtained from a generating function in terms of the normal characteristic functions. The approach is based on the Heisenberg equations of motion and operator calculus. The special and limiting cases are discussed.
引用
收藏
页数:10
相关论文
共 34 条
[1]   SQUEEZING IN SYSTEMS DESCRIBED BY QUARTIC HAMILTONIANS - NORMAL ORDERING TECHNIQUE [J].
BASEIA, B ;
BONATO, CA .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1992, 107 (09) :1041-1049
[2]   The time development operators for Wigner functions of harmonic oscillators with quadratic Hamiltonians [J].
BenAryeh, Y ;
Zoubi, H .
QUANTUM AND SEMICLASSICAL OPTICS, 1996, 8 (06) :1097-1101
[3]  
Breuer H.-P., 2007, The Theory of Open Quantum Systems
[4]  
Caldeira A., 2014, INTRO MACROSCOPIC QU, DOI DOI 10.1017/CBO9781139035439
[5]   PATH INTEGRAL APPROACH TO QUANTUM BROWNIAN-MOTION [J].
CALDEIRA, AO ;
LEGGETT, AJ .
PHYSICA A, 1983, 121 (03) :587-616
[6]   Adjoint master equation for quantum Brownian motion [J].
Carlesso, Matteo ;
Bassi, Angelo .
PHYSICAL REVIEW A, 2017, 95 (05)
[7]   Functional integral approach to time-dependent heat exchange in open quantum systems: general method and applications [J].
Carrega, M. ;
Solinas, P. ;
Braggio, A. ;
Sassetti, M. ;
Weiss, U. .
NEW JOURNAL OF PHYSICS, 2015, 17
[8]   Dynamics of SU(1,1) coherent states for the time-dependent quadratic Hamiltonian system [J].
Choi, Jeong Ryeol .
OPTICS COMMUNICATIONS, 2009, 282 (18) :3720-3728
[9]  
Coffey W.T., 2004, The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering, DOI [10.1142/5343, DOI 10.1142/5343]
[10]   Invariant Quantum States of Quadratic Hamiltonians [J].
Dodonov, Viktor V. .
ENTROPY, 2021, 23 (05)