Semidefinite programming relaxation methods for global optimization problems with sparse polynomials and unbounded semialgebraic feasible sets

被引:12
作者
Jeyakumar, V. [1 ]
Kim, S. [2 ]
Lee, G. M. [3 ]
Li, G. [1 ]
机构
[1] Univ New S Wales, Dept Appl Math, Sydney, NSW 2052, Australia
[2] Ewha Womans Univ, Dept Math, 52 Ewhayeodae Gil, Seoul 120750, South Korea
[3] Pukyong Natl Univ, Dept Appl Math, Busan 48513, South Korea
基金
新加坡国家研究基金会; 澳大利亚研究理事会;
关键词
Global continuous optimization; Sparse polynomial optimization; Structured sparsity; Sums of squares polynomials; Semidefinite programming relaxations; SDP-RELAXATIONS; SQUARES; SUMS;
D O I
10.1007/s10898-015-0356-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a hierarchy of semidefinite programming (SDP) relaxations for polynomial optimization with sparse patterns over unbounded feasible sets. The convergence of the proposed SDP hierarchy is established for a class of polynomial optimization problems. This is done by employing known sums-of-squares sparsity techniques of Kojima and Muramatsu Comput Optim Appl 42(1):31-41, (2009) and Lasserre SIAM J Optim 17:822-843, (2006) together with a representation theorem for polynomials over unbounded sets obtained recently in Jeyakumar et al. J Optim Theory Appl 163(3):707-718, (2014). We demonstrate that the proposed sparse SDP hierarchy can solve some classes of large scale polynomial optimization problems with unbounded feasible sets using the polynomial optimization solver SparsePOP developed by Waki et al. ACM Trans Math Softw 35:15 (2008).
引用
收藏
页码:175 / 190
页数:16
相关论文
共 37 条
[1]  
Andersen M., 2010, P IEEE INT S COMP AI
[2]   From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images [J].
Bruckstein, Alfred M. ;
Donoho, David L. ;
Elad, Michael .
SIAM REVIEW, 2009, 51 (01) :34-81
[3]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[4]   Enhancing Sparsity by Reweighted l1 Minimization [J].
Candes, Emmanuel J. ;
Wakin, Michael B. ;
Boyd, Stephen P. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) :877-905
[5]  
Feng C, 2010, P AMER CONTR CONF, P160
[6]  
Feng M., COMPLEMENTARITY FORM
[7]   Exploiting sparsity in semidefinite programming via matrix completion I: General framework [J].
Fukuda, M ;
Kojima, M ;
Murota, K ;
Nakata, K .
SIAM JOURNAL ON OPTIMIZATION, 2001, 11 (03) :647-674
[8]  
Ghaddar B., 2015, IEEE T POWER SYST, V99, P1
[9]   REPRESENTATIONS OF POSITIVE POLYNOMIALS AND OPTIMIZATION ON NONCOMPACT SEMIALGEBRAIC SETS [J].
Ha Huy Vui ;
Pham Tien Son .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (06) :3082-3103
[10]   On Polynomial Optimization Over Non-compact Semi-algebraic Sets [J].
Jeyakumar, V. ;
Lasserre, J. B. ;
Li, G. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 163 (03) :707-718