Facile Synthesis Of Fe2O3 Nanospheres Anchored On Oxidized Graphitic Carbon Nitride as a High-Performance Electrode Material for Supercapacitors

被引:6
|
作者
Zhang, Xiaoyong [1 ]
Liao, Huiwei [1 ]
Liu, Xiang [1 ]
Shang, Ronggang [1 ]
Zhou, Yu [1 ]
Zhou, Yanna [1 ]
机构
[1] Southwest Univ Sci & Technol, State Key Lab Environm Friendly Energy Mat, Sch Mat Sci & Engn, Mianyang 621010, Sichuan, Peoples R China
来源
关键词
Fe2O3; nanospheres; Oxidized graphitic carbon; Electrode material; supercapacitor; G-C3N4; NANOSHEETS; ALPHA-FE2O3; COMPOSITES;
D O I
10.20964/2020.03.54
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Fe2O3, which shows promise as an abundant and low-cost electrode material for supercapacitors has attracted much attention due to its high theoretical specific capacity. In this report, homogeneous Fe2O3 nanospheres/oxidized g-C3N4 (Fe2O3/OCN) are synthesized by anchoring Fe2O3 nanospheres on the surface of oxidized g-C3N4 for the first time via a facile hydrothermal method. More importantly, these Fe2O3 nanospheres are well-dispersed on the oxidized g-C3N4 layers, which can offer an abundance of active sites and effectively prevent the aggregation of Fe2O3 nanospheres during electrochemical reactions. Moreover, 10%OCN/Fe2O3 exhibits excellent electrochemical performance with an excellent specific capacitance of 243 F g(-1) at a current density of 1A g(-1), which is better than that of pure Fe2O3 nanospheres. Moreover, there is no obvious capacitance decrease after 1000 cycles. Therefore, Fe2O3/OCN is demonstrated to be an excellent electrode material for supercapacitors.
引用
收藏
页码:2133 / 2144
页数:12
相关论文
共 50 条
  • [31] A Facile Method for the Preparation of α-Fe2O3/Reduced Graphene Oxides Nanocomposites as Electrode Materials for High Performance Supercapacitors
    Ahmed, Faheem
    Hasan, P. M. Z.
    Kumar, Shalendra
    Shaalan, Nagih Mohammed
    Aljaafari, Abdullah
    Arshi, Nishat
    Albossed, Mohammed
    Almutairi, Ghazzai
    Alotaibi, Bandar
    SCIENCE OF ADVANCED MATERIALS, 2022, 14 (08) : 1342 - 1347
  • [32] Facile Synthesis of Nitrogen-Doped Mesoporous Hollow Carbon Nanospheres for High-Performance Supercapacitors
    Wang, Zhongbing
    Qiang, Hongwen
    Zhu, Zihao
    Liu, Jinpeng
    Chen, Chunnian
    Zhang, Dawei
    CHEMELECTROCHEM, 2018, 5 (16): : 2242 - 2249
  • [33] Ordered mesoporous carbon nanospheres as electrode materials for high-performance supercapacitors
    Yu, Xiaoliang
    Wang, Jian-gan
    Huang, Zheng-Hong
    Shen, Wangci
    Kang, Feiyu
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 36 : 66 - 70
  • [34] Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties
    Wu, Hongjing
    Wu, Guanglei
    Wang, Liuding
    POWDER TECHNOLOGY, 2015, 269 : 443 - 451
  • [35] Facile synthesis and characterization of high-performance NiMoO4 •A xH2O nanorods electrode material for supercapacitors
    Liu, Peipei
    Deng, Yanghua
    Zhang, Qiang
    Hu, Zhonghua
    Xu, Zijie
    Liu, Yafei
    Yao, Mingming
    Ai, Zhihong
    IONICS, 2015, 21 (10) : 2797 - 2804
  • [36] Facile hydrothermal synthesis of porous MgCo2O4 nanoflakes as an electrode material for high-performance asymmetric supercapacitors
    Chen, Huiyu
    Du, Xuming
    Wu, Runze
    Wang, Ya
    Sun, Jiale
    Zhang, Yanfei
    Xu, Chunju
    NANOSCALE ADVANCES, 2020, 2 (08): : 3263 - 3275
  • [37] Facile synthesis and characterization of high-performance NiMoO4 · xH2O nanorods electrode material for supercapacitors
    Peipei Liu
    Yanghua Deng
    Qiang Zhang
    Zhonghua Hu
    Zijie Xu
    Yafei Liu
    Mingming Yao
    Zhihong Ai
    Ionics, 2015, 21 : 2797 - 2804
  • [38] Facile synthesis of Bi2O3@MnO2 nanocomposite material: A promising electrode for high performance supercapacitors
    Shaikh, Zeenat A.
    Shinde, Pritamkumar, V
    Shaikh, Shoyebmohamad F.
    Al-Enizi, Abdullah M.
    Mane, Rajaram S.
    SOLID STATE SCIENCES, 2020, 102 (102)
  • [39] Facile synthesis and enhanced visible-light photocatalytic activity of graphitic carbon nitride decorated with ultrafine Fe2O3 nanoparticles
    Liu, Xin
    Jin, Ailing
    Jia, Yushuai
    Jiang, Junzhe
    Hu, Na
    Chen, Xiangshu
    RSC ADVANCES, 2015, 5 (112): : 92033 - 92041
  • [40] Tailoring the Composition of Ternary NiCoFe Layered Double Hydroxide with Graphitic Carbon Nitride as a Positive Electrode Material for High-Performance Hybrid Supercapacitors
    Elanthamilan, Elaiyappillai
    Wang, Sea-Fue
    BATTERIES & SUPERCAPS, 2025,