Bounds for Ramsey numbers of complete graphs dropping an edge

被引:7
作者
Li, Yusheng [1 ]
Shen, Jian [1 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.ejc.2006.12.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K-n - e be a graph obtained from a complete graph of order n by dropping an edge, and let G(p) be a Paley graph of order p. It is shown that if G(p) contains no K-n -e, then r(Kn+l -e) >= 2p+ 1. For example, G1493 contains no K-13 - e, so r(K-14 - e) >= 2987, improving the old bound 2557. It is also shown that r((K) over bar (2) + G) < 4(r)(G, <(K)over bar>(2) + G) - 2, implying that r(K-n - e) <= 4r(Kn-2, K-n - e) - 2. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:88 / 94
页数:7
相关论文
共 10 条
[1]   GENERALIZED RAMSEY THEORY FOR GRAPHS .2. SMALL DIAGONAL NUMBERS [J].
CHVATAL, V ;
HARARY, F .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 32 (02) :389-+
[2]   THE RAMSEY NUMBER OF K5-E [J].
CLAPHAM, C ;
EXOO, G ;
HARBORTH, H ;
MENGERSEN, I ;
SHEEHAN, J .
JOURNAL OF GRAPH THEORY, 1989, 13 (01) :7-15
[3]  
Exoo G, 2000, NEW LOWER BOUNDS TAB
[4]  
EXOO G, 1991, P APPL MATH, V5, pCH19
[5]  
HUANG YR, 1998, EUROPEAN J COMBIN, V19, P391
[6]   An upper bound for Ramsey numbers [J].
Li, YS ;
Rousseau, CC ;
Zang, WN .
APPLIED MATHEMATICS LETTERS, 2004, 17 (06) :663-665
[7]   LOWER BOUNDS FOR RAMSEY NUMBERS AND ASSOCIATION SCHEMES [J].
MATHON, R .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1987, 42 (01) :122-127
[8]   Tidier examples for lower bounds on diagonal Ramsey numbers [J].
McDiarmid, C ;
Steger, A .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1996, 74 (01) :147-152
[9]  
SHEARER J, 1986, J COMB THEORY A, V42, P213
[10]  
SHI LS, 2001, UNPUB UPPER BOUND FO