Improving classifier fusion using particle swarm optimization

被引:8
|
作者
Veeramachaneni, Kalyan [1 ]
Yan, Weizhong [2 ]
Goebel, Kai [3 ]
Osadciw, Lisa [1 ]
机构
[1] Syracuse Univ, Dept EECS, Syracuse, NY 13210 USA
[2] GE Global Change Ctr, Niskayuna, NY USA
[3] NASA, Ames Res Ctr, Moffett Field, CA USA
来源
2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN MULTI-CRITERIA DECISION MAKING | 2007年
关键词
decision level fusion; multiple classifiers fusion; particle swarm optimization;
D O I
10.1109/MCDM.2007.369427
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Both experimental and theoretical studies have proved that classifier fusion can be effective in improving overall classification performance. Classifier fusion can be performed on either score (raw classifier outputs) level or decision level. While tremendous research interests have been on score-level fusion, research work for decision-level fusion is sparse. This paper presents a particle swarm optimization based decision-level fusion scheme for optimizing classifier fusion performance. Multiple classifiers are fused at the decision level, and the particle swarm optimization algorithm finds optimal decision threshold for each classifier and the optimal fusion rule. Specifically, we present an optimal fusion strategy for fusing multiple classifiers to satisfy accuracy performance requirements, as applied to a real-world classification problem. The optimal decision fusion technique is found to perform significantly better than the conventional classifier fusion methods, i.e., traditional decision level fusion and averaged sum rule.
引用
收藏
页码:128 / +
页数:2
相关论文
共 50 条
  • [1] Multiresolution image fusion using particle swarm optimization
    Zhao, Cheng
    Fu, Meng-Yin
    Wang, Li-Ping
    Binggong Xuebao/Acta Armamentarii, 2010, 31 (02): : 171 - 176
  • [2] DESIGN OF OPTIMAL FUZZY CLASSIFIER SYSTEM USING PARTICLE SWARM OPTIMIZATION
    Rani, C.
    Deepa, S. N.
    2010 INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING TECHNOLOGIES (ICICT), 2010,
  • [3] Classifier design for static security assessment using particle swarm optimization
    Kalyani, S.
    Swarup, K. S.
    APPLIED SOFT COMPUTING, 2011, 11 (01) : 658 - 666
  • [4] A Framework for Optimization of Genetic Programming Evolved Classifier Expressions Using Particle Swarm Optimization
    Jabeen, Hajira
    Baig, Abdul Rauf
    HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, PT 1, 2010, 6076 : 56 - 63
  • [5] Improving identification ability of adulterants in powdered Panax notoginseng using particle swarm optimization and data fusion
    Yang, Xiaodong
    Song, Jie
    Peng, Lin
    Gao, Lutao
    Liu, Xuwen
    Xie, Lin
    Li, Guanglin
    INFRARED PHYSICS & TECHNOLOGY, 2019, 103
  • [6] Fusion of hand based biometrics using particle swarm optimization
    Hanmandlu, M.
    Kumar, Amioy
    Madasu, Vamsi K.
    Yarlagadda, Prasad
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, 2008, : 783 - +
  • [7] Multispectral and multiresolution image fusion using particle swarm optimization
    Hsuan-Ying Chen
    Jin-Jang Leou
    Multimedia Tools and Applications, 2012, 60 : 495 - 518
  • [8] Multispectral and multiresolution image fusion using particle swarm optimization
    Chen, Hsuan-Ying
    Leou, Jin-Jang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2012, 60 (03) : 495 - 518
  • [9] An Adaptive Multispectral Image Fusion Using Particle Swarm Optimization
    Azarang, Arian
    Ghassemian, Hassan
    2017 25TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2017, : 1708 - 1712
  • [10] Improving Particle Swarm Optimization Analysis Using Differential Models
    Hsiao, Sung-Jung
    Sung, Wen-Tsai
    APPLIED SCIENCES-BASEL, 2022, 12 (11):