GENERAL SEMI-INFINITE PROGRAMMING: SYMMETRIC MANGASARIAN-FROMOVITZ CONSTRAINT QUALIFICATION AND THE CLOSURE OF THE FEASIBLE SET

被引:9
作者
Guerra-Vazquez, F. [2 ]
Jongen, H. Th. [1 ]
Shikhman, V. [1 ]
机构
[1] Rhein Westfal TH Aachen, Dept Math C, D-52056 Aachen, Germany
[2] Univ Americas Puebla, Dept Math & Phys, Cholula 72820, Mexico
关键词
semi-infinite programming; GSIP; symmetric Mangasarian-Fromovitz constraint qualification; closure feasible set; KKT point; OPTIMIZATION;
D O I
10.1137/090775294
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The feasible set M in general semi-infinite programming (GSIP) need not be closed. This fact is well known. We introduce a natural constraint qualification, called symmetric Mangasarian-Fromovitz constraint qualification (Sym-MFCQ). The Sym-MFCQ is a nontrivial extension of the well-known (extended) MFCQ for the special case of semi-infinite programming (SIP) and disjunctive programming. Under the Sym-MFCQ the closure M has an easy and also natural description. As a consequence, we get a description of the interior and boundary of M. The Sym-MFCQ is shown to be generic and stable under C-1-perturbations of the defining functions. For the latter stability the consideration of the closure of M is essential. We introduce an appropriate notion of Karush-Kuhn-Tucker (KKT) points. We show that local minimizers are KKT points under the Sym-MFCQ.
引用
收藏
页码:2487 / 2503
页数:17
相关论文
共 10 条
  • [1] Generalized semi-infinite programming: the Symmetric Reduction Ansatz
    Guenzel, H.
    Jongen, H. Th.
    Stein, O.
    [J]. OPTIMIZATION LETTERS, 2008, 2 (03) : 415 - 424
  • [2] Generalized semi-infinite programming:: On generic local minimizers
    Guenzel, Harald
    Jongen, Hubertus Th.
    Stein, Oliver
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2008, 42 (03) : 413 - 421
  • [3] On the closure of the feasible set in generalized semi-infinite programming
    Guenzel, Harald
    Jongen, Hubertus Th.
    Stein, Oliver
    [J]. CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, 2007, 15 (03) : 271 - 280
  • [4] Generalized semi-infinite programming:: A tutorial
    Guerra Vazquez, F.
    Ruckmann, J.-J.
    Stein, O.
    Still, G.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 217 (02) : 394 - 419
  • [5] Hirsch M.W., 1976, Graduate Texts in Mathematics, V33
  • [6] One-parameter families of feasible sets in semi-infinite optimization
    Jongen, HT
    Rückmann, JJ
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 1999, 14 (02) : 181 - 203
  • [7] Generalized semi-infinite optimization: A first order optimality condition and examples
    Jongen, HT
    Ruckmann, JJ
    Stein, O
    [J]. MATHEMATICAL PROGRAMMING, 1998, 83 (01) : 145 - 158
  • [8] Disjunctive optimization: Critical point theory
    Jongen, HT
    Ruckmann, JJ
    Stein, O
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 93 (02) : 321 - 336
  • [9] Jongen HT., 2000, Nonlinear optimization in finite dimensions
  • [10] Stein O., 2003, BILEVEL STRATEGIES S