Fast computation of Jacobi-Fourier moments for invariant image recognition

被引:31
作者
Upneja, Rahul [1 ]
Singh, Chandan [2 ]
机构
[1] Sri Guru Granth Sahib World Univ, Dept Math, Fatehgarh Sahib 140406, India
[2] Punjabi Univ, Dept Comp Sci, Patiala 147002, Punjab, India
关键词
Jacobi-Fourier moments; Recursive method; Numerical stability; GENERIC ORTHOGONAL MOMENTS; POLAR HARMONIC TRANSFORMS; ZERNIKE MOMENTS; WATERMARKING;
D O I
10.1016/j.patcog.2014.11.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Jacobi-Fourier moments (JFMs) provide a wide class of orthogonal rotation invariant moments (ORIMs) which are useful for many image processing, pattern recognition and computer vision applications. They, however, suffer from high time complexity and numerical instability at high orders of moment. In this paper, a fast method based on the recursive computation of radial kernel function of JFMs is proposed which not only reduces time complexity but also improves their numerical stability. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1836 / 1843
页数:8
相关论文
共 20 条
[1]   ON THE CIRCLE POLYNOMIALS OF ZERNIKE AND RELATED ORTHOGONAL SETS [J].
BHATIA, AB ;
WOLF, E .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1954, 50 (01) :40-48
[2]  
Hoang T. V., 2011, THESIS U NANCY NANCY
[3]   Generic polar harmonic transforms for invariant image representation [J].
Hoang, Thai V. ;
Tabbone, Salvatore .
IMAGE AND VISION COMPUTING, 2014, 32 (08) :497-509
[4]   Fast Generic Polar Harmonic Transforms [J].
Hoang, Thai V. ;
Tabbone, Salvatore .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (07) :2961-2971
[5]   Errata and comments on "Generic orthogonal moments: Jacobi-Fourier moments for invariant image description" [J].
Hoang, Thai V. ;
Tabbone, Salvatore .
PATTERN RECOGNITION, 2013, 46 (11) :3148-3155
[6]   A novel approach to the fast computation of Zernike moments [J].
Hwang, Sun-Kyoo ;
Kim, Whoi-Yul .
PATTERN RECOGNITION, 2006, 39 (11) :2065-2076
[7]   Generic orthogonal moments: Jacobi-Fourier moments for invariant image description [J].
Ping, Ziliang ;
Ren, Haiping ;
Zou, Jian ;
Sheng, Yunlong ;
Bo, Wurigen .
PATTERN RECOGNITION, 2007, 40 (04) :1245-1254
[8]   Image description with Chebyshev-Fourier moments [J].
Ping, ZL ;
Wu, RG ;
Sheng, YL .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2002, 19 (09) :1748-1754
[9]   ORTHOGONAL FOURIER-MELLIN MOMENTS FOR INVARIANT PATTERN-RECOGNITION [J].
SHENG, YL ;
SHEN, LX .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (06) :1748-1757
[10]  
Singh C., 2012, J REAL-TIME IMAGE PR, P1