Artificial intelligence in pediatric and adult congenital cardiac MRI: an unmet clinical need

被引:32
作者
Arafati, Arghavan [1 ]
Hu, Peng [2 ]
Finn, J. Paul [2 ]
Rickers, Carsten [3 ]
Cheng, Andrew L. [4 ,5 ]
Jafarkhani, Hamid [6 ]
Kheradvar, Arash [1 ]
机构
[1] Univ Calif Irvine, Edwards Lifesci Ctr Adv Cardiovasc Technol, Irvine, CA 92697 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Radiol Sci, Los Angeles, CA 90095 USA
[3] Univ Hosp Hamburg Eppendorf, Adult Congenital Heart Dis Unit, Univ Heart Ctr, Hamburg, Germany
[4] Univ Southern Calif, Keck Sch Med, Dept Pediat, Los Angeles, CA USA
[5] Childrens Hosp, Div Pediat Cardiol, Los Angeles, CA 90027 USA
[6] Univ Calif Irvine, Ctr Pervas Commun & Comp, Irvine, CA USA
关键词
Cardiac MRI (CMR); congenital heart disease (CHD); deep learning; artificial intelligence (AI); cardiac segmentation; LEFT-VENTRICULAR SEGMENTATION; AUTOMATIC SEGMENTATION; IMAGE-RECONSTRUCTION; REGISTRATION; SET; GRADIENT; TRACKING; DISEASE; ATLAS;
D O I
10.21037/cdt.2019.06.09
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cardiac MRI (CMR) allows non-invasive, non-ionizing assessment of cardiac function and anatomy in patients with congenital heart disease (CHD). The utility of CMR as a non-invasive imaging tool for evaluation of CHD have been growing exponentially over the past decade. The algorithms based on artificial intelligence (AI), and in particular, deep learning, have rapidly become a methodology of choice for analyzing CMR. A wide range of applications for AI have been developed to tackle challenges in various aspects of CMR, and significant advances have also been made from image acquisition to image analysis and diagnosis. We include an overview of AI definitions, different architectures, and details on well-known methods. This paper reviews the major deep learning concepts used for analyses of patients with CHD. In the end, we have summarized a list of open challenges and concerns to be considered for future studies.
引用
收藏
页码:S310 / S325
页数:16
相关论文
共 111 条
[1]   Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging [J].
Al'Aref, Subhi J. ;
Anchouche, Khalil ;
Singh, Gurpreet ;
Slomka, Piotr J. ;
Kolli, Kranthi K. ;
Kumar, Amit ;
Pandey, Mohit ;
Maliakal, Gabriel ;
van Rosendael, Alexander R. ;
Beecy, Ashley N. ;
Berman, Daniel S. ;
Leipsic, Jonathan ;
Nieman, Koen ;
Andreini, Daniele ;
Pontone, Gianluca ;
Schoepf, U. Joseph ;
Shaw, Leslee J. ;
Chang, Hyuk-Jae ;
Narula, Jagat ;
Bax, Jeroen J. ;
Guan, Yuanfang ;
Min, James K. .
EUROPEAN HEART JOURNAL, 2019, 40 (24) :1975-+
[2]   Evaluating reinforcement learning agents for anatomical landmark detection [J].
Alansary, Amir ;
Oktay, Ozan ;
Li, Yuanwei ;
Le Folgoc, Loic ;
Hou, Benjamin ;
Vaillant, Ghislain ;
Kamnitsas, Konstantinos ;
Vlontzos, Athanasios ;
Glocker, Ben ;
Kainz, Bernhard ;
Rueckert, Daniel .
MEDICAL IMAGE ANALYSIS, 2019, 53 :156-164
[3]  
[Anonymous], ARXIV181010117
[4]  
[Anonymous], 2009 IEEE C COMP VIS
[5]  
[Anonymous], ARXIV170403669
[6]  
[Anonymous], ARXIV150306383
[7]  
[Anonymous], 2017, INT WORKSHOP STAT AT
[8]  
[Anonymous], P INT WORKSH STAT AT
[9]  
[Anonymous], 2017, ARXIV170301120
[10]  
[Anonymous], MIDAS J CARDIAC MR L