Wireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics in freely moving animals

被引:47
作者
Ausra, Jokubas [1 ]
Wu, Mingzheng [2 ,3 ]
Zhang, Xin [2 ,3 ]
Vazquez-Guardado, Abraham [4 ]
Skelton, Patrick [2 ,3 ]
Peralta, Roberto [5 ]
Avila, Raudel [6 ]
Murickan, Thomas [1 ]
Haney, Chad R. [7 ]
Huang, Yonggang [6 ]
Rogers, John A. [4 ,6 ,8 ,9 ,10 ]
Kozorovitskiy, Yevgenia [2 ]
Gutruf, Philipp [1 ,11 ,12 ,13 ]
机构
[1] Univ Arizona, Dept Biomed Engn, Tucson, AZ 85721 USA
[2] Northwestern Univ, Dept Neurobiol, Evanston, IL 60201 USA
[3] Northwestern Univ, Chem Life Proc Inst, Evanston, IL 60208 USA
[4] Northwestern Univ, Ctr Biointegrated Elect, Simpson Querrey Inst, Evanston, IL 60201 USA
[5] Univ Arizona, Dept Aerosp & Mech Engn, Tucson, AZ 85721 USA
[6] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
[7] Northwestern Univ, Ctr Adv Mol Imaging Radiol & Biomed Engn, Evanston, IL 60208 USA
[8] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[9] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA
[10] Northwestern Univ, Dept Neurol Surg, Feinberg Sch Med, Chicago, IL 60611 USA
[11] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA
[12] Univ Arizona, Inst Bio5, Tucson, AZ 85721 USA
[13] Univ Arizona, Neurosci Grad Interdisciplinary Program GIDP, Tucson, AZ 85721 USA
关键词
transcranial; wireless; optogenetic; long-range; implantable; OPTICAL-PROPERTIES; BRAIN; CIRCUITS; TISSUES; SYSTEMS;
D O I
10.1073/pnas.2025775118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Wireless, battery-free, and fully subdermally implantable optogenetic tools are poised to transform neurobiological research in freely moving animals. Current-generation wireless devices are sufficiently small, thin, and light for subdermal implantation, offering some advantages over tethered methods for naturalistic behavior. Yet current devices using wireless power delivery require invasive stimulus delivery, penetrating the skull and disrupting the blood-brain barrier. This can cause tissue displacement, neuronal damage, and scarring. Power delivery constraints also sharply curtail operational arena size. Here, we implement highly miniaturized, capacitive power storage on the platform of wireless subdermal implants. With approaches to digitally manage power delivery to optoelectronic components, we enable two classes of applications: transcranial optogenetic activation millimeters into the brain (validated using motor cortex stimulation to induce turning behaviors) and wireless optogenetics in arenas of more than 1 m(2) in size. This methodology allows for previously impossible behavioral experiments leveraging the modern optogenetic toolkit.
引用
收藏
页数:12
相关论文
共 61 条
[11]   An Enhanced Multiplication of RF Energy Harvesting Efficiency Using Relay Resonator for Food Monitoring [J].
Cao, Xuan-Tu ;
Chung, Wan-Young .
SENSORS, 2019, 19 (09)
[12]   Deep brain optogenetics without intracranial surgery [J].
Chen, Ritchie ;
Gore, Felicity ;
Nguyen, Quynh-Anh ;
Ramakrishnan, Charu ;
Patel, Sneha ;
Kim, Soo Hyun ;
Raffiee, Misha ;
Kim, Yoon Seok ;
Hsueh, Brian ;
Krook-Magnusson, Esther ;
Soltesz, Ivan ;
Deisseroth, Karl .
NATURE BIOTECHNOLOGY, 2021, 39 (02) :161-164
[13]   High-performance genetically targetable optical neural silencing by light-driven proton pumps [J].
Chow, Brian Y. ;
Han, Xue ;
Dobry, Allison S. ;
Qian, Xiaofeng ;
Chuong, Amy S. ;
Li, Mingjie ;
Henninger, Michael A. ;
Belfort, Gabriel M. ;
Lin, Yingxi ;
Monahan, Patrick E. ;
Boyden, Edward S. .
NATURE, 2010, 463 (7277) :98-102
[14]   Primate optogenetics: Progress and prognosis [J].
El-Shamayleh, Yasmine ;
Horwitz, Gregory D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (52) :26195-26203
[15]   Strategies for targeting primate neural circuits with viral vectors [J].
El-Shamayleh, Yasmine ;
Ni, Amy M. ;
Horwitz, Gregory D. .
JOURNAL OF NEUROPHYSIOLOGY, 2016, 116 (01) :122-134
[16]   Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models [J].
Gutruf, Philipp ;
Yin, Rose T. ;
Lee, K. Benjamin ;
Ausra, Jokubas ;
Brennan, Jaclyn A. ;
Qiao, Yun ;
Xie, Zhaoqian ;
Peralta, Roberto ;
Talarico, Olivia ;
Murillo, Alejandro ;
Chen, Sheena W. ;
Leshock, John P. ;
Haney, Chad R. ;
Waters, Emily A. ;
Zhang, Changxing ;
Luan, Haiwen ;
Huang, Yonggang ;
Trachiotis, Gregory ;
Efimov, Igor R. ;
Rogers, John A. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[17]   Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research [J].
Gutruf, Philipp ;
Krishnamurthi, Vaishnavi ;
Vazquez-Guardado, Abraham ;
Xie, Zhaoqian ;
Banks, Anthony ;
Su, Chun-Ju ;
Xu, Yeshou ;
Haney, Chad R. ;
Waters, Emily A. ;
Kandela, Irawati ;
Krishnan, Siddharth R. ;
Ray, Tyler ;
Leshock, John P. ;
Huang, Yonggang ;
Chanda, Debashis ;
Rogers, John A. .
NATURE ELECTRONICS, 2018, 1 (12) :652-660
[18]   Implantable optical systems for neuroscience research in behaving animal models-Current approaches and future directions [J].
Gutruf, Philipp ;
Good, Cameron H. ;
Rogers, John A. .
APL PHOTONICS, 2018, 3 (12)
[19]   Histological studies of the effects of chronic implantation of ceramic-based microelectrode arrays and microdialysis probes in rat prefrontal cortex [J].
Hascup, Erin R. ;
af Bjerken, Sara ;
Hascup, Kevin N. ;
Pomerleau, Francois ;
Huettl, Peter ;
Stromberg, Ingrid ;
Gerhardt, Greg A. .
BRAIN RESEARCH, 2009, 1291 :12-20
[20]   Peromyscus burrowing: A model system for behavioral evolution [J].
Hu, Caroline K. ;
Hoekstra, Hopi E. .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2017, 61 :107-114