Vibration frequency of graphene based composites: A multiscale approach

被引:81
作者
Chandra, Y. [2 ]
Chowdhury, R. [1 ]
Scarpa, F. [3 ]
Adhikari, S. [1 ]
Sienz, J. [2 ]
Arnold, C. [4 ]
Murmu, T. [4 ]
Bould, D. [2 ]
机构
[1] Swansea Univ, Multidisciplinary Nanotechnol Ctr, Swansea SA2 8PP, W Glam, Wales
[2] Swansea Univ, ASTUTE Project, Swansea SA2 8PP, W Glam, Wales
[3] Univ Bristol, Adv Composites Ctr Innovat & Sci, Bristol BS8 1TR, Avon, England
[4] Swansea Univ, Welsh Composite Ctr, Swansea SA2 8PP, W Glam, Wales
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2012年 / 177卷 / 03期
关键词
Graphene sheets; Composites; Atomistic model; Natural frequencies; ELASTIC PROPERTIES; BRIDGING DOMAIN; NANOCOMPOSITES; BEHAVIOR; QUANTUM; MODELS;
D O I
10.1016/j.mseb.2011.12.024
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a multiscale approach for vibration frequency analysis of graphene/polymer composites. The graphene is modelled at the atomistic scale, and the matrix deformation is analysed by the continuum finite element method. Inter-connectivity between graphene and polymer matrix are assumed to be bonded by van der Waals interactions at the interface. The impact of geometrical configuration (armchair and zigzag), boundary conditions and length on the overall stiffness of the graphene reinforced plastics (GRP) is studied. The natural frequency and vibrational mode shapes of GRP studied have displayed dependence on the length and also the boundary conditions. The exceptional vibrational behaviour and large stiffness displayed by GRP makes them a potential replacement for conventional composite fibres such as carbon and glass fibres. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:303 / 310
页数:8
相关论文
共 70 条
  • [1] The calibration of carbon nanotube based bionanosensors
    Adhikari, S.
    Chowdhury, R.
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 107 (12)
  • [2] Adhikari S., 2011, PHYS LETT A, V375, P1276
  • [3] [Anonymous], J PHYS D, DOI DOI 10.1088/0022-3727/8/16/003
  • [4] [Anonymous], 1976, NUMERICAL METHOD FIN, DOI DOI 10.1002/NME.1620110913
  • [5] [Anonymous], 1968, THEORY MATRIX STRUCT
  • [6] ANSYS Inc, 2011, MECH APDL THEOR MAN
  • [7] Nanoscale vibrational analysis of a multi-layered graphene sheet embedded in an elastic medium
    Behfar, K
    Naghdabadi, R
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2005, 65 (7-8) : 1159 - 1164
  • [8] Blevins R. D., 1984, Formulas for Natural Frequencies and Mode Shape
  • [9] Vibrational characteristics of bilayer graphene sheets
    Chandra, Y.
    Chowdhury, R.
    Scarpa, F.
    Adhikaricor, S.
    [J]. THIN SOLID FILMS, 2011, 519 (18) : 6026 - 6032
  • [10] Transverse vibration of single-layer graphene sheets
    Chowdhury, R.
    Adhikari, S.
    Scarpa, F.
    Friswell, M. I.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (20)