ω* has (almost) no continuous images

被引:14
作者
Dow, A
Hart, KP
机构
[1] York Univ, Dept Math, N York, ON M3J 1P3, Canada
[2] Delft Univ Technol, Dept Tech Math & Informat, NL-2600 GA Delft, Netherlands
关键词
D O I
10.1007/BF02775024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the following statement follows from the Open Colouring Axiom (OCA): if X is locally compact sigma-compact but not compact and if its Cech-Stone remainder X* is a continuous image of omega*, then X is the union of omega and a compact set. It follows that the remainders of familiar spaces like the real line or the sum of countably many Canter sets need not be continuous images of omega*.
引用
收藏
页码:29 / 39
页数:11
相关论文
共 10 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
Farah I., 1997, Analytic ideals and their quotients
[3]  
Fine N. J., 1960, B AM MATH SOC, V66, P376
[4]  
Kunen Kenneth, 1968, THESIS STANFORD U
[5]  
PAROVICENKO II, 1963, SOV MATH DOKL, V4, P592
[6]  
TODORCEVIC S, 1989, CONT MATH, V34
[7]  
van Mill J., 1984, HDB SET THEORETIC TO, P503
[8]   PAROVICENKOS CHARACTERIZATION OF BETA-OMEGA-OMEGA IMPLIES CH [J].
VANDOUWEN, EK ;
VANMILL, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 72 (03) :539-541
[9]   DEFINABLE AUTOMORPHISMS OF P(OMEGA) FIN [J].
VELICKOVIC, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 96 (01) :130-135
[10]   OCA AND AUTOMORPHISMS OF P(OMEGA)/FIN [J].
VELICKOVIC, B .
TOPOLOGY AND ITS APPLICATIONS, 1993, 49 (01) :1-13