Besov characteristic of a distribution

被引:0
作者
Vedel, Beatrice [1 ]
机构
[1] Univ Paris 12, Lab Anal & Math Appl, F-94010 Creteil, France
来源
REVISTA MATEMATICA COMPLUTENSE | 2007年 / 20卷 / 02期
关键词
Besov spaces; wavelet analysis; weighted Besov spaces; anisotropic Besov spaces; anisotropic wavelet analysis;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Besov characteristic of a distribution f is the function s(f) defined for 0 <= t < infinity by s(f) (t) = sup{s epsilon R; f epsilon B-1/t,1(s)(R-n)}. We give in this paper a criterion for a function Gamma defined on [0, +infinity] to be the Besov characteristic of a distribution. Generalizations of this criterion to particular weighted Besov spaces and to anisotropic Besov spaces are also given.
引用
收藏
页码:407 / 421
页数:15
相关论文
共 50 条
  • [41] On Some Properties of Superreflexive Besov Spaces
    A. N. Agadzhanov
    Doklady Mathematics, 2020, 101 : 177 - 181
  • [42] On nuclearity of embeddings between Besov spaces
    Cobos, Fernando
    Dominguez, Oscar
    Kuehn, Thomas
    JOURNAL OF APPROXIMATION THEORY, 2018, 225 : 209 - 223
  • [43] Embeddings of Besov spaces of logarithmic smoothness
    Cobos, Fernando
    Dominguez, Oscar
    STUDIA MATHEMATICA, 2014, 223 (03) : 193 - 204
  • [44] BESOV-KOTHE SPACES AND APPLICATIONS
    Ho, Kwok-Pun
    ANNALS OF FUNCTIONAL ANALYSIS, 2013, 4 (02) : 27 - 47
  • [45] Symmetric Besov-Bessel Spaces
    Houissa, Khadija
    Sifi, Mohamed
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2014, 22 (03): : 73 - 94
  • [46] Wavelet statistical models and Besov spaces
    Choi, H
    Baraniuk, R
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VII, 1999, 3813 : 489 - 501
  • [47] Nonstationary Stokes system in Besov spaces
    Zadrzynska, Ewa
    Zajaczkowski, Wojciech M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (03) : 360 - 383
  • [48] Bilinear forms on weighted Besov spaces
    Cascante, Carme
    Fabrega, Joan
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2016, 68 (01) : 383 - 403
  • [49] AN INTEGRAL REPRESENTATION FOR BESOV AND LIPSCHITZ SPACES
    Zhu, Kehe
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 98 (01) : 129 - 144
  • [50] Wavelet characterizations for anisotropic Besov spaces
    Hochmuth, R
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 12 (02) : 179 - 208