Besov characteristic of a distribution

被引:0
|
作者
Vedel, Beatrice [1 ]
机构
[1] Univ Paris 12, Lab Anal & Math Appl, F-94010 Creteil, France
来源
REVISTA MATEMATICA COMPLUTENSE | 2007年 / 20卷 / 02期
关键词
Besov spaces; wavelet analysis; weighted Besov spaces; anisotropic Besov spaces; anisotropic wavelet analysis;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Besov characteristic of a distribution f is the function s(f) defined for 0 <= t < infinity by s(f) (t) = sup{s epsilon R; f epsilon B-1/t,1(s)(R-n)}. We give in this paper a criterion for a function Gamma defined on [0, +infinity] to be the Besov characteristic of a distribution. Generalizations of this criterion to particular weighted Besov spaces and to anisotropic Besov spaces are also given.
引用
收藏
页码:407 / 421
页数:15
相关论文
共 50 条
  • [21] Greedy Bases for Besov Spaces
    S. J. Dilworth
    D. Freeman
    E. Odell
    T. Schlumprecht
    Constructive Approximation, 2011, 34 : 281 - 296
  • [22] Characterizations of weighted Besov spaces
    Pradolini, G.
    Viviani, B.
    MATHEMATISCHE NACHRICHTEN, 2007, 280 (1-2) : 194 - 204
  • [23] A classification of anisotropic Besov spaces
    Cheshmavar, Jahangir
    Fuehr, Hartmut
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 49 (03) : 863 - 896
  • [24] Changes of variable in Besov spaces
    Bourdaud, G
    Sickel, W
    MATHEMATISCHE NACHRICHTEN, 1999, 198 : 19 - 39
  • [25] Composition operators on Besov algebras
    Moussai, Madani
    REVISTA MATEMATICA IBEROAMERICANA, 2012, 28 (01) : 239 - 272
  • [26] THE CONVOLUTION IN ANISOTROPIC BESOV SPACES
    Tleukhanova, N. T.
    Sadykova, K. K.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2020, 106 (02): : 18 - 30
  • [27] Oscillating singularities in Besov spaces
    Melot, C
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (03): : 367 - 416
  • [28] Greedy Bases for Besov Spaces
    Dilworth, S. J.
    Freeman, D.
    Odell, E.
    Schlumprecht, T.
    CONSTRUCTIVE APPROXIMATION, 2011, 34 (02) : 281 - 296
  • [29] Besov regularity for interface problems
    Dahlke, S
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1999, 79 (06): : 383 - 388
  • [30] Composition Semigroups on the Besov SpacesComposition Semigroups on the Besov SpacesA. Anderson et al.
    Austin Anderson
    Mirjana Jovovic
    Wayne Smith
    Complex Analysis and Operator Theory, 2025, 19 (3)