Besov characteristic of a distribution

被引:0
|
作者
Vedel, Beatrice [1 ]
机构
[1] Univ Paris 12, Lab Anal & Math Appl, F-94010 Creteil, France
来源
REVISTA MATEMATICA COMPLUTENSE | 2007年 / 20卷 / 02期
关键词
Besov spaces; wavelet analysis; weighted Besov spaces; anisotropic Besov spaces; anisotropic wavelet analysis;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Besov characteristic of a distribution f is the function s(f) defined for 0 <= t < infinity by s(f) (t) = sup{s epsilon R; f epsilon B-1/t,1(s)(R-n)}. We give in this paper a criterion for a function Gamma defined on [0, +infinity] to be the Besov characteristic of a distribution. Generalizations of this criterion to particular weighted Besov spaces and to anisotropic Besov spaces are also given.
引用
收藏
页码:407 / 421
页数:15
相关论文
共 50 条
  • [1] T[p]-Formalism in Besov Spaces
    Ben Abid, Moez
    RESULTS IN MATHEMATICS, 2019, 74 (04)
  • [2] Besov Reconstruction
    Lucas Broux
    David Lee
    Potential Analysis, 2023, 59 : 1875 - 1912
  • [3] Besov Reconstruction
    Broux, Lucas
    Lee, David
    POTENTIAL ANALYSIS, 2023, 59 (04) : 1875 - 1912
  • [4] Lifting in Besov spaces
    Mironescu, Petru
    Russ, Emmanuel
    Sire, Yannick
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 193 (193)
  • [5] Limits of Besov norms
    Triebel, Hans
    ARCHIV DER MATHEMATIK, 2011, 96 (02) : 169 - 175
  • [6] On the -Hyperholomorphic Besov Space
    Gonzalez Cervantes, Jose Oscar
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2015, 9 (05) : 1219 - 1227
  • [7] Limits of Besov norms
    Hans Triebel
    Archiv der Mathematik, 2011, 96 : 169 - 175
  • [8] Besov wavefront set
    Dappiaggi, Claudio
    Rinaldi, Paolo
    Sclavi, Federico
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (06)
  • [9] On restrictions of Besov functions
    Brasseur, Julien
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 170 : 197 - 225
  • [10] Besov wavefront set
    Claudio Dappiaggi
    Paolo Rinaldi
    Federico Sclavi
    Analysis and Mathematical Physics, 2023, 13