A note on spheres in a Euclidean space

被引:0
作者
Deshmukh, S [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2004年 / 64卷 / 1-2期
关键词
orientable; positively curved hypersurface; shape operator; mean curvature;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an orientable compact and connected positively curved hypersurface in the Euclidean space Rn+1, n > 2, with scalar curvature S, shape operator A and mean curvature alpha, it is shown that the inequality parallel toAparallel to(2) S greater than or equal to (1)/(2) parallel toRparallel to(2) + parallel toQparallel to(2) + 2n(n-1)parallel todelalphaparallel to(2) implies that the hypersurface is a sphere, where delalpha is the gradient of alpha, and parallel toRparallel to, parallel toQparallel to are the lengths of the curvature tensor field R, the Ricci operator Q of the hypersurface respectively.
引用
收藏
页码:31 / 37
页数:7
相关论文
共 2 条
[1]  
Chen B.Y., 1983, Total Mean Curvature and Submanifolds of Finite Type
[2]  
Kobayashi S, 1969, FDN DIFFERENTIAL GEO