Optimal control of thermodynamic port-Hamiltonian Systems

被引:6
作者
Maschke, Bernhard [1 ]
Philipp, Friedrich [2 ]
Schaller, Manuel [2 ]
Worthmann, Karl [2 ]
Faulwasser, Timm [3 ]
机构
[1] Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, LAGEPP,UMR 5007, Lyon, France
[2] Tech Univ Ilmemau, Inst Math, Ilmemau, Germany
[3] TU Dortmund Univ, Inst Energy Syst Energy Efficiency & Energy Econ, Dortmund, Germany
关键词
port-Hamiltonian systems; irreversible thermodynamic systems; optimal control; manifold turnpike; PASSIVITY BASED CONTROL; IRREVERSIBLE-PROCESSES; 2ND LAW; FEEDBACK; REACTORS;
D O I
10.1016/j.ifacol.2022.11.028
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of minimizing the entropy, energy, or exergy production for state transitions of irreversible port-Hamiltonian systems subject to control constraints. Via a dissipativity-based analysis we show that optimal solutions exhibit the manifold turnpike phenomenon with respect to the manifold of thermodynamic equilibria. We illustrate our analytical findings via numerical results for a heat exchanger. Copyright (C) 2022 The Authors.
引用
收藏
页码:55 / 60
页数:6
相关论文
共 34 条
[1]   From irreversible thermodynamics to a robust control theory for distributed process systems [J].
Alonso, AA ;
Ydstie, BE ;
Banga, JR .
JOURNAL OF PROCESS CONTROL, 2002, 12 (04) :507-517
[2]   Process systems, passivity and the second law of thermodynamics [J].
Alonso, AA ;
Ydstie, BE .
COMPUTERS & CHEMICAL ENGINEERING, 1996, 20 :S1119-S1124
[4]   Bond graph modelling for chemical reactors [J].
Couenne, F ;
Jallut, C ;
Maschke, B ;
Breedveld, PC ;
Tayakout, M .
MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2006, 12 (2-3) :159-174
[5]   An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes [J].
Eberard, D. ;
Maschke, B. M. .
REPORTS ON MATHEMATICAL PHYSICS, 2007, 60 (02) :175-198
[6]  
Faulwasser T., 2022, Numerical Control: Part A, P367
[7]  
Faulwasser T, 2022, Arxiv, DOI arXiv:2106.06571
[8]   Manifold turnpikes, trims, and symmetries [J].
Faulwasser, Timm ;
Flasskamp, Kathrin ;
Ober-Blobaum, Sina ;
Schaller, Manuel ;
Worthmann, Karl .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2022, 34 (04) :759-788
[9]   A Dissipativity Characterization of Velocity Turnpikes in Optimal Control Problems for Mechanical Systems [J].
Faulwasser, Timm ;
Flasskamp, Kathrin ;
Ober-Bloebaum, Sina ;
Worthmann, Karl .
IFAC PAPERSONLINE, 2021, 54 (09) :624-629
[10]   An entropy-based formulation of irreversible processes based on contact structures [J].
Favache, A. ;
Dochain, D. ;
Maschke, B. .
CHEMICAL ENGINEERING SCIENCE, 2010, 65 (18) :5204-5216