Inhibition of Viral Membrane Fusion by Peptides and Approaches to Peptide Design

被引:24
|
作者
Duezguenes, Nejat [1 ]
Fernandez-Fuentes, Narcis [2 ]
Konopka, Krystyna [1 ]
机构
[1] Univ Pacific, Arthur A Dugoni Sch Dent, Dept Biomed Sci, San Francisco, CA 94103 USA
[2] Aberystwyth Univ, Inst Biol Environm & Rural Sci, Aberystwyth SY23 3EE, Dyfed, Wales
来源
PATHOGENS | 2021年 / 10卷 / 12期
关键词
peptide design; virus entry; 6-helix bundle; coiled coil; computation methods; SARS-CoV-2; HIV-1; influenza; HEPATITIS-B-VIRUS; RESPIRATORY SYNDROME CORONAVIRUS; PROTEIN-PROTEIN INTERACTIONS; N-TERMINAL PEPTIDES; IN-VITRO SELECTION; INFLUENZA-VIRUS; HEPTAD-REPEAT; SPIKE PROTEIN; POTENT INHIBITORS; LOW-PH;
D O I
10.3390/pathogens10121599
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Fusion of lipid-enveloped viruses with the cellular plasma membrane or the endosome membrane is mediated by viral envelope proteins that undergo large conformational changes following binding to receptors. The HIV-1 fusion protein gp41 undergoes a transition into a "six-helix bundle" after binding of the surface protein gp120 to the CD4 receptor and a co-receptor. Synthetic peptides that mimic part of this structure interfere with the formation of the helix structure and inhibit membrane fusion. This approach also works with the S spike protein of SARS-CoV-2. Here we review the peptide inhibitors of membrane fusion involved in infection by influenza virus, HIV-1, MERS and SARS coronaviruses, hepatitis viruses, paramyxoviruses, flaviviruses, herpesviruses and filoviruses. We also describe recent computational methods used for the identification of peptide sequences that can interact strongly with protein interfaces, with special emphasis on SARS-CoV-2, using the PePI-Covid19 database.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Neutron diffraction studies of viral fusion peptides
    Bradshaw, JP
    Darkes, MJM
    Katsaras, J
    Epand, RM
    PHYSICA B-CONDENSED MATTER, 2000, 276 : 495 - 498
  • [42] Neutron diffraction studies of viral fusion peptides
    Bradshaw, JP
    Darkes, DJM
    Harroun, TA
    Katsaras, J
    Epand, RM
    BIOPHYSICAL JOURNAL, 2000, 78 (01) : 60A - 60A
  • [43] De novo design of conformationally flexible transmembrane peptides driving membrane fusion
    Hofmann, MW
    Weise, K
    Ollesch, J
    Agrawal, P
    Stalz, H
    Stelzer, W
    Hulsbergen, F
    de Groot, H
    Gerwert, K
    Reed, J
    Langosch, D
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (41) : 14776 - 14781
  • [44] New chemical method of viral inactivation for vaccine development based on membrane fusion inhibition
    Stauffer, Fausto
    De Miranda, Joari
    Schechter, Marcos C.
    Queiroz, Fernando A.
    Santos, Nathalia O.
    Alves, Ada M. B.
    Da Poian, Andrea T.
    VACCINE, 2007, 25 (46) : 7885 - 7892
  • [45] SNARE analogous peptides for membrane fusion
    Lygina, Antonina
    Meyenberg, Karsten
    van den Bogaart, Geert
    Jahn, Reinhard
    Diederichsen, Ulf
    JOURNAL OF PEPTIDE SCIENCE, 2012, 18 : S31 - S32
  • [46] Design of fusion constructs to facilitate the production and study of viral membrane proteins and their complexes
    Adetuyi, Oluwatosin
    Majeed, Saman
    Islam, Md Majharul
    Georgieva, Elka R.
    PROTEIN SCIENCE, 2023, 32
  • [47] Structure and function of membrane fusion peptides
    Tamm, LK
    Han, X
    Li, YL
    Lai, AL
    BIOPOLYMERS, 2002, 66 (04) : 249 - 260
  • [48] Peptides manipulate the membrane curvature: Action of antimicrobial peptides and fusion peptides
    Wang, WC
    Ding, L
    Liu, WH
    Huang, HW
    Yang, L
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 249A - 249A
  • [49] Viral Membrane Fusion and the Transmembrane Domain
    Barrett, Chelsea T.
    Dutch, Rebecca Ellis
    VIRUSES-BASEL, 2020, 12 (07):
  • [50] Membrane interface-interacting sequences, other than the fusion peptide, within the ectodomain of viral fusion proteins.
    Nieva, JL
    Gallaher, WR
    Suarez, T
    Agirre, A
    Goñi, FM
    BIOPHYSICAL JOURNAL, 2000, 78 (01) : 411A - 411A