Decrease of H2O2 plasma membrane permeability during adaptation to H2O2 in Saccharomyces cerevisiae

被引:121
作者
Branco, MR
Marinho, HS
Cyrne, L
Antunes, F [1 ]
机构
[1] Univ Lisbon, Fac Ciencias, Dept Quim & Bioquim, P-1749016 Lisbon, Portugal
[2] Univ Lisbon, Fac Ciencias, Ctr Quim & Bioquim, Grp Bioquim Oxidantes & Antioxidantes, P-1749016 Lisbon, Portugal
[3] Inst Invest Cient Bento da Rocha Cabral, P-1250047 Lisbon, Portugal
关键词
D O I
10.1074/jbc.M311818200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Contrary to what is widely believed, recent published results show that H2O2 does not freely diffuse across biomembranes. The fast removal of H2O2 by antioxidant enzymes is able to generate a gradient if H2O2 is produced in a different compartment from that containing the enzymes (Antunes, F., and Cadenas, E. (2000) FEBS Lett. 475, 121-126). In this work, we extended these studies and tested whether an active regulation of biomembranes permeability characteristics is part of the cell response to oxidative stress. Using Saccharomyces cerevisiae as a model, we showed that: (a) H2O2 gradients across the plasma membrane are formed upon exposure to external H2O2; W there is a correlation between the magnitude of the gradients and the resistance to H2O2; (c) there is not a correlation between the intracellular capacity to remove H2O2 and the resistance to H2O2; (d) the plasma membrane permeability to H2O2 decreases by a factor of two upon acquisition of resistance to this agent by pre-exposing cells either to nonlethal doses of H2O2 or to cycloheximide, an inhibitor of protein synthesis; and (e) erg3Delta and erg6Delta mutants, which have impaired ergosterol biosynthesis pathways, show higher plasma membrane permeability to H2O2 and are more sensitive to H2O2. Altogether, the regulation of the plasma membrane permeability to H2O2 emerged as a new mechanism by which cells respond and adapt to H2O2. The consequences of the results to cellular redox compartmentalization and to the origin and evolution of the eukaryotic cell are discussed.
引用
收藏
页码:6501 / 6506
页数:6
相关论文
共 45 条
[1]  
Aebi HE., 1983, Methods of enzymatic analysis, P273
[2]   SEPARATION OF OXIDANT-INITIATED AND REDOX-REGULATED STEPS IN THE NF-KAPPA-B SIGNAL-TRANSDUCTION PATHWAY [J].
ANDERSON, MT ;
STAAL, FJT ;
GITLER, C ;
HERZENBERG, LA ;
HERZENBERG, LA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (24) :11527-11531
[3]   Cellular titration of apoptosis with steady state concentrations of H2O2:: Submicromolar levels of H2O2 induce apoptosis through Fenton chemistry independent of the cellular thiol state [J].
Antunes, F ;
Cadenas, E .
FREE RADICAL BIOLOGY AND MEDICINE, 2001, 30 (09) :1008-1018
[4]   Lipid peroxidation in mitochondrial inner membranes .1. An integrative kinetic model [J].
Antunes, F ;
Salvador, A ;
Marinho, HS ;
Alves, R ;
Pinto, RE .
FREE RADICAL BIOLOGY AND MEDICINE, 1996, 21 (07) :917-943
[5]   Estimation of H2O2 gradients across biomembranes [J].
Antunes, F ;
Cadenas, E .
FEBS LETTERS, 2000, 475 (02) :121-126
[6]   Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases [J].
Avery, AM ;
Avery, SV .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (36) :33730-33735
[7]   Genome-wide expression patterns in Saccharomyces cerevisiae:: Comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol [J].
Bammert, GF ;
Fostel, JM .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2000, 44 (05) :1255-1265
[8]   The mitochondrial-lysosomal axis theory of aging - Accumulation of damaged mitochondria as a result of imperfect autophagocytosis [J].
Brunk, UT ;
Terman, A .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2002, 269 (08) :1996-2002
[9]   Remodeling of yeast genome expression in response to environmental changes [J].
Causton, HC ;
Ren, B ;
Koh, SS ;
Harbison, CT ;
Kanin, E ;
Jennings, EG ;
Lee, TI ;
True, HL ;
Lander, ES ;
Young, RA .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (02) :323-337
[10]   BLUEPRINT FOR A CELL - THE NATURE AND ORIGIN OF LIFE - DEDUVE,C [J].
CAVALIERSMITH, T .
NATURE, 1991, 351 (6322) :110-110