Detecting inertial effects with airborne matter-wave interferometry

被引:299
作者
Geiger, R. [1 ,2 ]
Menoret, V. [1 ]
Stern, G. [1 ,2 ,3 ,4 ]
Zahzam, N. [5 ]
Cheinet, P. [1 ]
Battelier, B. [1 ,3 ,4 ]
Villing, A. [1 ]
Moron, F. [1 ]
Lours, M. [3 ,4 ]
Bidel, Y. [5 ]
Bresson, A. [5 ]
Landragin, A. [3 ,4 ]
Bouyer, P. [1 ,6 ,7 ]
机构
[1] Univ Paris 11, Lab Charles Fabry, UMR 8501, Inst Opt,CNRS, F-91127 Palaiseau, France
[2] CNES, F-31401 Toulouse, France
[3] CNRS, LNE SYRTE, Observ Paris, F-75014 Paris, France
[4] UPMC, F-75014 Paris, France
[5] DMPH, ONERA, F-91761 Palaiseau, France
[6] Univ Bordeaux 1, Lab Photon Numer & Nanosci, IOGS, F-33405 Talence, France
[7] CNRS, F-33405 Talence, France
关键词
ATOMIC INTERFEROMETRY;
D O I
10.1038/ncomms1479
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Inertial sensors relying on atom interferometry offer a breakthrough advance in a variety of applications, such as inertial navigation, gravimetry or ground- and space-based tests of fundamental physics. These instruments require a quiet environment to reach their performance and using them outside the laboratory remains a challenge. Here we report the first operation of an airborne matter-wave accelerometer set up aboard a 0g plane and operating during the standard gravity (1g) and microgravity (0g) phases of the flight. At g, the sensor can detect inertial effects more than 300 times weaker than the typical acceleration fluctuations of the aircraft. We describe the improvement of the interferometer sensitivity in 0g, which reaches 2x10(-4)m s(-2)/root Hz with our current setup. We finally discuss the extension of our method to airborne and spaceborne tests of the Universality of free fall with matter waves.
引用
收藏
页数:7
相关论文
共 32 条
[1]  
Berman P.R., 1997, Atom interferometry
[2]   ATOMIC INTERFEROMETRY WITH INTERNAL STATE LABELING [J].
BORDE, CJ .
PHYSICS LETTERS A, 1989, 140 (1-2) :10-12
[3]  
CHEINET P, 2006, THESIS U P M CURIE, P37
[4]   Measurement of the sensitivity function in a time-domain atomic interferometer [J].
Cheinet, Patrick ;
Canuel, Benjamin ;
Dos Santos, Franck Pereira ;
Gauguet, Alexandre ;
Yver-Leduc, Florence ;
Landragin, Arnaud .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2008, 57 (06) :1141-1148
[5]   Optics and interferometry with atoms and molecules [J].
Cronin, Alexander D. ;
Schmiedmayer, Joerg ;
Pritchard, David E. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (03) :1051-1129
[6]   Testing general relativity with atom interferometry [J].
Dimopoulos, Savas ;
Graham, Peter W. ;
Hogan, Jason M. ;
Kasevich, Mark A. .
PHYSICAL REVIEW LETTERS, 2007, 98 (11)
[7]   Atomic gravitational wave interferometric sensor [J].
Dimopoulos, Savas ;
Graham, Peter W. ;
Hogan, Jason M. ;
Kasevich, Mark A. ;
Rajendran, Surjeet .
PHYSICAL REVIEW D, 2008, 78 (12)
[8]   Matter wave explorer of gravity (MWXG) [J].
Ertmer, W. ;
Schubert, C. ;
Wendrich, T. ;
Gilowski, M. ;
Zaiser, M. ;
v. Zoest, T. ;
Rasel, E. ;
Borde, Ch. J. ;
Clairon, A. ;
Laurent, P. ;
Lemonde, P. ;
Santarelli, G. ;
Schleich, W. ;
Cataliotti, F. S. ;
Inguscio, M. ;
Poli, N. ;
Sorrentino, F. ;
Modugno, C. ;
Tino, G. M. ;
Gill, P. ;
Klein, H. ;
Margolis, H. ;
Reynaud, S. ;
Salomon, C. ;
Lambrecht, A. ;
Peik, E. ;
Jentsch, C. ;
Johann, U. ;
Rathke, A. ;
Bouyer, P. ;
Cacciapuoti, L. ;
De Natale, P. ;
Christophe, B. ;
Foulon, B. ;
Touboul, P. ;
Maleki, L. ;
Yu, N. ;
Turyshev, S. G. ;
Anderson, J. D. ;
Schmidt-Kaler, F. ;
Walser, R. ;
Vigue, J. ;
Buechner, M. ;
Angonin, M. -C. ;
Delva, P. ;
Tourrenc, P. ;
Bingham, R. ;
Kent, B. ;
Wicht, A. ;
Wang, L. J. .
EXPERIMENTAL ASTRONOMY, 2009, 23 (02) :611-649
[9]   Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle -: art. no. 240404 [J].
Fray, S ;
Diez, CA ;
Hänsch, TW ;
Weitz, M .
PHYSICAL REVIEW LETTERS, 2004, 93 (24)
[10]   Characterization and limits of a cold-atom Sagnac interferometer [J].
Gauguet, A. ;
Canuel, B. ;
Leveque, T. ;
Chaibi, W. ;
Landragin, A. .
PHYSICAL REVIEW A, 2009, 80 (06)