Simulation of Droplet Formation in T-Inlet Microchannels with Different Junction Angle

被引:5
作者
Yang, Qingjun [1 ]
Cao, Wang [1 ]
Mao, Qi [1 ]
机构
[1] Harbin Inst Technol, Dept Fluid Control & Automat, Xidazhi St 92, Harbin 150001, Peoples R China
关键词
Capillary number; Contact angle; Droplet generation; Junction angle; T-inlet microchannel; LEVEL SET METHOD; FLOW; NANOPARTICLES; ENCAPSULATION;
D O I
10.1002/ceat.202200214
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The level set method was used to numerically simulate the droplet formation process in T-junction microchannels with different junction angle. The effects of flow rate ratio, capillary number, and contact angle on droplet formation under different junction angles were discussed. The numerical simulation results show that the dimensionless length and generation frequency of microdroplets increase with the flow rate ratio. It was observed that the droplet transforms from the squeezing regime to the dripping regime when the capillary number Ca is >= 0.02. For Ca <= 0.04, the smallest droplet was generated in the microchannel with 120 degrees junction angle. Finally, the results also indicate that the effect of the contact angle is discrepant at different junction angles.
引用
收藏
页码:1876 / 1883
页数:8
相关论文
共 37 条
[1]   Droplet microfluidics for the highly controlled synthesis of branched gold nanoparticles [J].
Abalde-Cela, Sara ;
Taladriz-Blanco, Patricia ;
de Oliveira, Marcelo Ganzarolli ;
Abell, Chris .
SCIENTIFIC REPORTS, 2018, 8
[2]   Investigation of pressure profile evolution during confined microdroplet formation using a two-phase level set method [J].
Bashir, Shazia ;
Rees, Julia M. ;
Zimmerman, Willam B. .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2014, 60 :40-49
[3]   Simulations of microfluidic droplet formation using the two-phase level set method [J].
Bashir, Shazia ;
Rees, Julia M. ;
Zimmerman, William B. .
CHEMICAL ENGINEERING SCIENCE, 2011, 66 (20) :4733-4741
[4]   Size-Controlled Flow Synthesis of Gold Nanoparticles Using a Segmented Flow Microfluidic Platform [J].
Cabeza, Victor Sebastian ;
Kuhn, Simon ;
Kulkarni, Amol A. ;
Jensen, Klavs F. .
LANGMUIR, 2012, 28 (17) :7007-7013
[5]   Droplet Microfluidic Technology: Mirodroplets Formation and Manipulation [J].
Chen Jiu-Sheng ;
Jiang Jia-Huan .
CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2012, 40 (08) :1293-1300
[6]   CFD Simulation of Droplet Formation in a Wide-Type Microfluidic T-Junction [J].
Chen, Nicheng ;
Wu, Jizhou ;
Jiang, Hanmei ;
Dong, Lichun .
JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2012, 33 (11) :1635-1641
[7]   Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions [J].
Christopher, Gordon F. ;
Noharuddin, N. Nadia ;
Taylor, Joshua A. ;
Anna, Shelley L. .
PHYSICAL REVIEW E, 2008, 78 (03)
[8]   Transition from squeezing to dripping in a microfluidic T-shaped junction [J].
De Menech, M. ;
Garstecki, P. ;
Jousse, F. ;
Stone, H. A. .
JOURNAL OF FLUID MECHANICS, 2008, 595 :141-161
[9]   Microfluidic synthesis of advanced microparticles for encapsulation and controlled release [J].
Duncanson, Wynter J. ;
Lin, Tina ;
Abate, Adam R. ;
Seiffert, Sebastian ;
Shah, Rhutesh K. ;
Weitz, David A. .
LAB ON A CHIP, 2012, 12 (12) :2135-2145
[10]   A Review on the Hydrodynamics of Taylor Flow in Microchannels: Experimental and Computational Studies [J].
Etminan, Amin ;
Muzychka, Yuri S. ;
Pope, Kevin .
PROCESSES, 2021, 9 (05)