The completion theorem in K-theory for proper actions of a discrete group

被引:46
作者
Lück, W
Oliver, B
机构
[1] Univ Paris 13, CNRS, UMR 7539, LAGA, F-93430 Villetaneuse, France
[2] Univ Munster, Inst Math & Informat, D-48149 Munster, Germany
关键词
K-theory; proper actions; vector bundles;
D O I
10.1016/S0040-9383(99)00077-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a version of the Atiyah-Segal completion theorem for proper actions of an infinite discrete group G. More precisely, for any finite proper G-CW-complex X, K*(EG x X-G) is the completion of K-G*(X) with respect to a certain ideal. We also show, for such G and X, that K-G(X) can be defined as the Grothendieck group of the monoid of G-vector bundles over X. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:585 / 616
页数:32
相关论文
共 20 条
[1]   PARALLELIZABILITY OF PROPER ACTIONS, GLOBAL K-SLICES AND MAXIMAL COMPACT SUBGROUPS [J].
ABELS, H .
MATHEMATISCHE ANNALEN, 1974, 212 (01) :1-19
[2]  
[Anonymous], LECT NOTES MATH
[3]  
[Anonymous], GRADUATE TEXTS MATH
[4]  
Atiyah M. F., 1969, Introduction To Commutative Algebra, Addison-Wesley series in mathematics
[5]  
Atiyah M. F., 1961, PUBL MATH-PARIS, V9, P23, DOI 10.1007/BF02698718
[6]  
Atiyah M. F., 1967, K-theory
[7]   BOTT PERIODICITY AND INDEX OF ELLIPTIC OPERATORS [J].
ATIYAH, MF .
QUARTERLY JOURNAL OF MATHEMATICS, 1968, 19 (74) :113-&
[8]  
Atiyah MF, 1969, J DIFFER GEOM, V3, P1, DOI 10.4310/jdg/1214428815
[9]  
BAUM P, 1988, FETE TOPOLOGY, P163
[10]  
Bredon G. E., 1967, LECT NOTES MATH, V34