N-doped hollow carbon tubes derived N-HCTs@NiCo2O4 as bifunctional oxygen electrocatalysts for rechargeable Zinc-air batteries

被引:10
|
作者
Fu, Dongju [1 ]
Zhu, ZiYue [1 ,2 ]
Chen, Jianjun [1 ]
Ye, Liqiang [1 ]
Song, XinRui [2 ]
Zeng, XieRong [2 ]
机构
[1] Tsinghua Univ Shenzhen, Res Inst, Shenzhen 518057, Guangdong, Peoples R China
[2] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen 518060, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Zinc-air batteries; Non-precious catalysts; N-doped hollow carbon tubes; Bifunctional electrocatalytic; ACTIVE-SITES; ZN; NICO2O4; NANOSHEETS; NANOPARTICLES; NANOFIBERS; NANOWIRES; NANOTUBES; CATALYSTS; DESIGN;
D O I
10.1016/j.jelechem.2021.115804
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
It is paramount important to design and explore excellent bifunctional oxygen electrocatalysts to conquer or weaken the shortcomings encountered by Zinc-air batteries at present. Herein, a novel N-doped hollow carbon tubes modified by uniform NiCo2O4 nanocrystals (N-HCTs@NiCo2O4), has been developed as an extremely efficient bifunctional catalyst. The hollow structure of N-HCTs possesses a large specific surface area of 610.60 cm g(-1) which provides abundant active N-dopant sites for the oxygen reduction reaction, whereas the NiCo2O4 nanocrystals serve as the positive phase for the oxygen evolution reaction. It is found that the efficient bifunctional activity is obtained by establishing a coupling interface between N-HCTs and NiCo2O4. The N-HCTs@NiCo2O4 composite has a half-wave potential of 0.81 V toward ORR and the overpotential of 330 mV at a current density of 10 mA cm(-2) toward OER as compared with noble metal catalysts. The N- HCTs@NiCo2O4 as the cathode catalyst for Zinc-air batteries exhibits superior peak power density (150 mW cm(-2)), specific capacity up to 779 mAh g(-1), and good stability even after 100 h of cyclic charge/discharge cycles N-HCTs@NiCo2O4 has good prospects for practical applications of non-precious metal catalysts in the cathode of Zinc-air batteries.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] N-doped hollow carbon tubes derived N-HCTs@NiCo2O4 as bifunctional oxygen electrocatalysts for rechargeable Zinc-air batteries
    Fu, Dongju
    Zhu, ZiYue
    Chen, Jianjun
    Ye, Liqiang
    Song, XinRui
    Zeng, XieRong
    Journal of Electroanalytical Chemistry, 2021, 902
  • [2] Hollow Co/N-C@NiCo2O4 Spheres as Highly Efficient Bifunctional Oxygen Electrocatalysts for Rechargeable Zinc-Air Batteries
    Fu, Dongju
    Zhu, Ziyue
    Gao, Shaojun
    Qi, Hui
    Liu, Xuguang
    Liu, Weifeng
    Zeng, Shaozhong
    ENERGY & FUELS, 2023, 37 (15) : 11319 - 11331
  • [3] Fe, N-Doped Hollow Porous Carbon Spheres Decorated with Ultrasmall Co NPs as Efficient Bifunctional Electrocatalysts for Rechargeable Zinc-Air Batteries
    Peng, Jiayao
    Liu, Ting
    Ou, Liqi
    Feng, Yueqi
    Qiu, Yiyi
    Chen, Yan
    Huang, Jianlin
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (03): : 1092 - 1099
  • [4] (Fe,Co)/N-Doped Multi-Walled Carbon Nanotubes as Efficient Bifunctional Electrocatalysts for Rechargeable Zinc-Air Batteries
    Qi, Yugang
    Yuan, Shan
    Cui, Lili
    Wang, Zizhun
    He, Xingquan
    Zhang, Wei
    Asefa, Tewodros
    CHEMCATCHEM, 2021, 13 (03) : 1023 - 1033
  • [5] N, S co-doped carbon with embedment of FeNi alloy as bifunctional oxygen electrocatalysts for rechargeable Zinc-air batteries
    Wu, Run
    Wang, Xixi
    Ge, Lei
    Zheng, Zehao
    Zhu, Yijun
    Zhou, Chuan
    Yuan, Jinglin
    Zhu, Shiliang
    Gu, Yuxing
    Zhou, Wei
    Shao, Zongping
    CARBON, 2023, 202 : 141 - 149
  • [6] N-Doped Carbon Confined NiCo Alloy Hollow Spheres as an Efficient and Durable Oxygen Electrocatalyst for Zinc-Air Batteries
    Huang, Shijie
    Zhang, Wei
    Chen, Qiong
    Zhou, Shuo
    Sun, Ling
    Sha, Linna
    Zhuang, Guilin
    Wang, Po
    Han, Xiguang
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (30)
  • [7] N-doped mesoporous FeNx/carbon as ORR and OER bifunctional electrocatalyst for rechargeable zinc-air batteries
    Ding, Jieting
    Wang, Peng
    Ji, Shan
    Wang, Hui
    Linkov, Vladimir
    Wang, Rongfang
    ELECTROCHIMICA ACTA, 2019, 296 : 653 - 661
  • [8] Interface Engineering of CoO/N-Doped Carbon Nanomaterials as a Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries
    Sun, Qiming
    Zhao, Yiwei
    Yu, Xiaodan
    Zhang, Chao
    Xing, Shuangxi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (06)
  • [9] High-performance bifunctional electrocatalysts for zinc-air batteries using coaxial electrospun hollow N-doped carbon nanofibers decorated with NiCo and CoMn nanocrystals
    Yuan, Ye
    Fan, Chuanjun
    Wang, Zhixin
    Pang, Beili
    Zhang, Qian
    Chen, Yingjie
    Yu, Liyan
    Dong, Lifeng
    JOURNAL OF ENERGY STORAGE, 2025, 107
  • [10] Nickel-iron layered double hydroxides interlinked by N-doped carbon network as bifunctional electrocatalysts for rechargeable zinc-air batteries
    Zhang, Jing
    Li, Chunjie
    Zheng, Yu
    Shen, Mengge
    Wen, Huan
    Ma, Ruguang
    DIAMOND AND RELATED MATERIALS, 2024, 141