New Fractional Dynamic Inequalities via Conformable Delta Derivative on Arbitrary Time Scales

被引:1
作者
El-Deeb, Ahmed A. [1 ]
Ahmad, Hijaz [2 ]
Awrejcewicz, Jan [3 ]
机构
[1] Al Azhar Univ, Dept Math, Fac Sci, Cairo 11884, Egypt
[2] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II 39, I-00186 Rome, Italy
[3] Lodz Univ Technol, Dept Automat Biomech & Mechatron, 1-15 Stefanowski St, PL-90924 Lodz, Poland
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 11期
关键词
Steffensen's inequality; dynamic inequality; alpha-conformable calculus; time scale; STEFFENSEN-TYPE INEQUALITIES; CALCULUS;
D O I
10.3390/sym13112049
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Building on the work of Josip Pecaric in 2013 and 1982 and on the work of Srivastava in 2017. We prove some new alpha-conformable dynamic inequalities of Steffensen-type on time scales. In the case when alpha=1, we obtain some well-known time scale inequalities due to Steffensen inequalities. For some specific time scales, we further show some relevant inequalities as special cases: alpha-conformable integral inequalities and alpha-conformable discrete inequalities. Symmetry plays an essential role in determining the correct methods to solve dynamic inequalities.
引用
收藏
页数:11
相关论文
共 48 条
[41]  
Sarikaya MZ, 2017, INT J ANAL APPL, V15, P23
[42]   New inequalities of Opial type for conformable fractional integrals [J].
Sarikaya, Mehmet Zeki ;
Budak, Huseyin .
TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (05) :1164-1173
[43]   New weighted Ostrowski and Cebysev type inequalities on time scales [J].
Sarikaya, Mehmet Zeki .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (05) :1510-1514
[44]  
Set E, 2017, ACTA MATH UNIV COMEN, V86, P309
[45]   An exploration of combined dynamic derivatives on time scales and their applications [J].
Sheng, Q. ;
Fadag, M. ;
Henderson, J. ;
Davis, J. M. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (03) :395-413
[46]   Some Nonlinear Delay Volterra-Fredholm Type Dynamic Integral Inequalities on Time Scales [J].
Tian, Yazhou ;
El-Deeb, A. A. ;
Meng, Fanwei .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2018, 2018
[47]   Some improvements and generalizations of Steffensen's integral inequality [J].
Wu, Shan-He ;
Srivastava, H. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 192 (02) :422-428
[48]   Fractional Reverse Coposn's Inequalities via Conformable Calculus on Time Scales [J].
Zakarya, Mohammed ;
Altanji, Mohamed ;
AlNemer, Ghada ;
Abd El-Hamid, Hoda A. ;
Cesarano, Clemente ;
Rezk, Haytham M. .
SYMMETRY-BASEL, 2021, 13 (04)