New Fractional Dynamic Inequalities via Conformable Delta Derivative on Arbitrary Time Scales

被引:1
作者
El-Deeb, Ahmed A. [1 ]
Ahmad, Hijaz [2 ]
Awrejcewicz, Jan [3 ]
机构
[1] Al Azhar Univ, Dept Math, Fac Sci, Cairo 11884, Egypt
[2] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II 39, I-00186 Rome, Italy
[3] Lodz Univ Technol, Dept Automat Biomech & Mechatron, 1-15 Stefanowski St, PL-90924 Lodz, Poland
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 11期
关键词
Steffensen's inequality; dynamic inequality; alpha-conformable calculus; time scale; STEFFENSEN-TYPE INEQUALITIES; CALCULUS;
D O I
10.3390/sym13112049
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Building on the work of Josip Pecaric in 2013 and 1982 and on the work of Srivastava in 2017. We prove some new alpha-conformable dynamic inequalities of Steffensen-type on time scales. In the case when alpha=1, we obtain some well-known time scale inequalities due to Steffensen inequalities. For some specific time scales, we further show some relevant inequalities as special cases: alpha-conformable integral inequalities and alpha-conformable discrete inequalities. Symmetry plays an essential role in determining the correct methods to solve dynamic inequalities.
引用
收藏
页数:11
相关论文
共 48 条
[1]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[2]   Inequalities on time scales: A survey [J].
Agarwal, R ;
Bohner, M ;
Peterson, A .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (04) :535-557
[3]  
Agarwal R.P., 2014, Dynamic Inequalities on Time Scales
[4]   Generalizations of Hardy's Type Inequalities via Conformable Calculus [J].
AlNemer, Ghada ;
Kenawy, Mohammed ;
Zakarya, Mohammed ;
Cesarano, Clemente ;
Rezk, Haytham M. .
SYMMETRY-BASEL, 2021, 13 (02) :1-13
[5]  
Alomari M., 2018, Turk. J. Sci, V3, P32
[6]   Foundations of nabla fractional calculus on time scales and inequalities [J].
Anastassiou, George A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (12) :3750-3762
[7]   Principles of delta fractional calculus on time scales and inequalities [J].
Anastassiou, George A. .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (3-4) :556-566
[8]  
[Anonymous], 2016, CONTRIBUTIONS MATH E
[9]   A conformable fractional calculus on arbitrary time scales [J].
Benkhettou, Nadia ;
Hassani, Salima ;
Torres, Delfim F. M. .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) :93-98
[10]  
Bohner M., 2003, ADV DYNAMIC EQUATION, DOI DOI 10.1007/978-0-8176-8230-9