AN EFFICIENT GALERKIN BOUNDARY ELEMENT METHOD FOR THE TRANSIENT HEAT EQUATION

被引:19
作者
Messner, Michael [1 ]
Schanz, Martin [1 ]
Tausch, Johannes [2 ]
机构
[1] Graz Univ Technol, Inst Appl Mech, A-8010 Graz, Austria
[2] So Methodist Univ, Dept Math, Dallas, TX 75275 USA
基金
美国国家科学基金会;
关键词
heat equation; boundary element method; Galerkin discretization; multipole method;
D O I
10.1137/151004422
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present boundary integral representations of several initial boundary value problems related to the heat equation. A Galerkin discretization with piecewise constant functions in time and piecewise linear functions in space leads to optimal a priori error estimates, provided that the meshwidths in space and time satisfy h(t) = O(h(x)(2)). Each time step involves the solution of a linear system, whose spectral condition number is independent of the refinement under the same assumption on the mesh. We show that if the parabolic multipole method is used to apply parabolic boundary integral operators, the overall complexity of the scheme is log-linear while preserving the convergence of the Galerkin discretization method. The theoretical estimates are confirmed numerically at the end of the paper.
引用
收藏
页码:A1554 / A1576
页数:23
相关论文
共 15 条
[1]  
ARNOLD DN, 1989, J COMPUT MATH, V7, P100
[2]  
Braess D., 2007, FINITE ELEMENTS
[4]   BOUNDARY INTEGRAL-OPERATORS FOR THE HEAT-EQUATION [J].
COSTABEL, M .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1990, 13 (04) :498-552
[5]   A FAST ALGORITHM FOR THE EVALUATION OF HEAT POTENTIALS [J].
GREENGARD, L ;
STRAIN, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) :949-963
[6]  
Messner M., 2014, COMPUT ENG SCI, V23
[7]   A fast Galerkin method for parabolic space-time boundary integral equations [J].
Messner, Michael ;
Schanz, Martin ;
Tausch, Johannes .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 258 :15-30
[8]  
Nishimura N., 2002, APPL MECH REV, V55, P299, DOI DOI 10.1115/1.1482087
[9]  
NOON P. J., 1988, THESIS U MARYLAND
[10]   The fast multipole method for the symmetric boundary integral formulation [J].
Of, G ;
Steinbach, O ;
Wendland, WL .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (02) :272-296