Complexity Reduction in Large Quantum Systems: Fragment Identification and Population Analysis via a Local Optimized Minimal Basis

被引:15
作者
Mohr, Stephan [1 ]
Masella, Michel [2 ]
Ratcliff, Laura E. [3 ]
Genovese, Luigi [4 ,5 ]
机构
[1] Barcelona Supercomp Ctr, Barcelona 08034, Spain
[2] CEA Saclay, Lab Biol Struct & Radiol, Serv Bioenerget Biol Struct & Mecanisme, Inst Biol & Technol Saclay, F-91191 Gif Sur Yvette, France
[3] Argonne Natl Lab, Argonne Leadership Comp Facil, 9700 S Cass Ave, Argonne, IL 60439 USA
[4] Univ Grenoble Alpes, INAC MEM, L Sim, F-38000 Grenoble, France
[5] CEA, INAC MEM, L Sim, F-38000 Grenoble, France
关键词
DENSITY-FUNCTIONAL THEORY; MOLECULAR-ORBITAL METHOD; AB-INITIO CALCULATIONS; ATOMIC MULTIPOLE; ACCURATE; ONETEP; MODEL; REPRESENTATION; CRYSTAL; CHARGES;
D O I
10.1021/acs.jctc.7b00291
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present, within Kohn Sham density functional theory calculations, a quantitative method to identify and assess the partitioning of a large quantum-mechanical system into fragments. We then show how within this framework simple generalizations of other well-known population analyses can be used to extract, from first principles, reliable electrostatic multipoles for the identified fragments. Our approach reduces arbitrariness in the fragmentation procedure and enables the possibility to assess quantitatively whether the corresponding fragment multipoles can be interpreted as observable quantities associated with a system moiety. By applying our formalism within the code BIGDFT, we show that the use of a minimal set of in situ optimized basis functions allows at the same time a proper fragment definition and an accurate description of the electronic structure.
引用
收藏
页码:4079 / 4088
页数:10
相关论文
共 60 条
  • [1] The SIESTA method;: developments and applicability
    Artacho, Emilio
    Anglada, E.
    Dieguez, O.
    Gale, J. D.
    Garcia, A.
    Junquera, J.
    Martin, R. M.
    Ordejon, P.
    Pruneda, J. M.
    Sanchez-Portal, D.
    Soler, J. M.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (06)
  • [2] Calculations for millions of atoms with density functional theory: linear scaling shows its potential
    Bowler, D. R.
    Miyazaki, T.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (07)
  • [3] Recent progress with large-scale ab initio calculations:: the CONQUEST code
    Bowler, DR
    Choudhury, R
    Gillan, MJ
    Miyazaki, T
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (05): : 989 - 1000
  • [4] Bowler DR, 2000, INT J QUANTUM CHEM, V77, P831, DOI 10.1002/(SICI)1097-461X(2000)77:5<831::AID-QUA5>3.0.CO
  • [5] 2-G
  • [6] Case D.A., 2010, AMBER 11
  • [7] The Amber biomolecular simulation programs
    Case, DA
    Cheatham, TE
    Darden, T
    Gohlke, H
    Luo, R
    Merz, KM
    Onufriev, A
    Simmerling, C
    Wang, B
    Woods, RJ
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) : 1668 - 1688
  • [8] Reducing the scaling of the fragment molecular orbital method using the multipole method
    Choi, Cheol Ho
    Fedorov, Dmitri G.
    [J]. CHEMICAL PHYSICS LETTERS, 2012, 543 : 159 - 165
  • [9] Energy-Based Molecular Fragmentation Methods
    Collins, Michael A.
    Bettens, Ryan P. A.
    [J]. CHEMICAL REVIEWS, 2015, 115 (12) : 5607 - 5642
  • [10] Daubechies I., 1992, 10 LECT WAVELETS, DOI DOI 10.1137/1.9781611970104