Global and Local Feature Reconstruction for Medical Image Segmentation

被引:45
作者
Song, Jiahuan [1 ]
Chen, Xinjian [1 ,2 ]
Zhu, Qianlong [1 ]
Shi, Fei [1 ]
Xiang, Dehui [1 ]
Chen, Zhongyue [1 ]
Fan, Ying [3 ]
Pan, Lingjiao [4 ]
Zhu, Weifang [1 ]
机构
[1] Soochow Univ, MIPAV Lab, Sch Elect & Informat Engn, Suzhou 215006, Jiangsu, Peoples R China
[2] Soochow Univ, State Key Lab Radiat Med & Protect, Suzhou 215006, Jiangsu, Peoples R China
[3] Shanghai Jiao Tong Univ, Peoples Hosp 1, Shanghai 200940, Peoples R China
[4] Jiangsu Univ Technol, Sch Elect & Informat Engn, Zhenjiang 213000, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Image reconstruction; Semantics; Image segmentation; Convolution; Biomedical imaging; Task analysis; Medical image segmentation; deep learning; convolutional neural network; global feature reconstruction module; local feature reconstruction module; NETWORK;
D O I
10.1109/TMI.2022.3162111
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Learning how to capture long-range dependencies and restore spatial information of down-sampled feature maps are the basis of the encoder-decoder structure networks in medical image segmentation. U-Net based methods use feature fusion to alleviate these two problems, but the global feature extraction ability and spatial information recovery ability of U-Net are still insufficient. In this paper, we propose a Global Feature Reconstruction (GFR) module to efficiently capture global context features and a Local Feature Reconstruction (LFR) module to dynamically up-sample features, respectively. For the GFR module, we first extract the global features with category representation from the feature map, then use the different level global features to reconstruct features at each location. The GFR module establishes a connection for each pair of feature elements in the entire space from a global perspective and transfers semantic information from the deep layers to the shallow layers. For the LFR module, we use low-level feature maps to guide the up-sampling process of high-level feature maps. Specifically, we use local neighborhoods to reconstruct features to achieve the transfer of spatial information. Based on the encoder-decoder architecture, we propose a Global and Local Feature Reconstruction Network (GLFRNet), in which the GFR modules are applied as skip connections and the LFR modules constitute the decoder path. The proposed GLFRNet is applied to four different medical image segmentation tasks and achieves state-of-the-art performance.
引用
收藏
页码:2273 / 2284
页数:12
相关论文
共 47 条
  • [1] Akbari M, 2018, IEEE ENG MED BIO, P69, DOI 10.1109/EMBC.2018.8512197
  • [2] RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge
    Bogunovic, Hrvoje
    Venhuizen, Freerk
    Klimscha, Sophie
    Apostolopoulos, Stefanos
    Bab-Hadiashar, Alireza
    Bagci, Ulas
    Beg, Mirza Faisal
    Bekalo, Loza
    Chen, Qiang
    Ciller, Carlos
    Gopinath, Karthik
    Gostar, Amirali K.
    Jeon, Kiwan
    Ji, Zexuan
    Kang, Sung Ho
    Koozekanani, Dara D.
    Lu, Donghuan
    Morley, Dustin
    Parhi, Keshab K.
    Park, Hyoung Suk
    Rashno, Abdolreza
    Sarunic, Marinko
    Shaikh, Saad
    Sivaswamy, Jayanthi
    Tennakoon, Ruwan
    Yadav, Shivin
    De Zanet, Sandro
    Waldstein, Sebastian M.
    Gerendas, Bianca S.
    Klaver, Caroline
    Sanchez, Clara, I
    Schmidt-Erfurth, Ursula
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) : 1858 - 1874
  • [3] HarDNet: A Low Memory Traffic Network
    Chao, Ping
    Kao, Chao-Yang
    Ruan, Yu-Shan
    Huang, Chien-Hsiang
    Lin, Youn-Long
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3551 - 3560
  • [4] DRINet for Medical Image Segmentation
    Chen, Liang
    Bentley, Paul
    Mori, Kensaku
    Misawa, Kazunari
    Fujiwara, Michitaka
    Rueckert, Daniel
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) : 2453 - 2462
  • [5] Chen LC, 2017, Arxiv, DOI [arXiv:1706.05587, 10.48550/arxiv.1706.05587.ArXiv, DOI 10.48550/ARXIV.1706.05587.ARXIV]
  • [6] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
    Chen, Liang-Chieh
    Zhu, Yukun
    Papandreou, George
    Schroff, Florian
    Adam, Hartwig
    [J]. COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 833 - 851
  • [7] Chen YP, 2018, ADV NEUR IN, V31
  • [8] Deng-Ping Fan, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12266), P263, DOI 10.1007/978-3-030-59725-2_26
  • [9] Multi-Organ Segmentation Over Partially Labeled Datasets With Multi-Scale Feature Abstraction
    Fang, Xi
    Yan, Pingkun
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (11) : 3619 - 3629
  • [10] Selective Feature Aggregation Network with Area-Boundary Constraints for Polyp Segmentation
    Fang, Yuqi
    Chen, Cheng
    Yuan, Yixuan
    Tong, Kai-yu
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT I, 2019, 11764 : 302 - 310