Layerwise Class-Aware Convolutional Neural Network

被引:1
作者
Cui, Zhen [1 ]
Niu, Zhiheng [2 ]
Liu, Luoqi [2 ]
Yan, Shuicheng [2 ]
机构
[1] Southeast Univ, Key Lab Child Dev & Learning Sci, Minist Educ, Res Ctr Learning Sci, Nanjing 210096, Jiangsu, Peoples R China
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 119077, Singapore
基金
中国国家自然科学基金;
关键词
Convolutional neural network (CNN); deep learning; mutual information; object classification;
D O I
10.1109/TCSVT.2016.2587389
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The human vision system usually has a specifically activated area of neurons when recognizing a category of images. Inspired by this visual mechanism, we propose a layerwise class-aware convolutional neural network architecture to explicitly discover category-tailored neurons on intermediate hidden layers to improve the network learning ability. Instead of directly selecting activated neurons for different categories, we inversely suppress those neurons of intermediate layers irrelevant with the given target class to produce a class-specific subnetwork, which implicitly enhances the discriminability of hidden layer features due to the increase of the inter-class discrepancy on them. Together with the classifier of the top layer, we jointly learn this network by formulating the suppressor of hidden layers as a penalty term in the objective function. To address class-specific neuron suppression in each hidden layer, we also introduce a statistic method based on mutual information to dynamically and automatically update the suppressed neurons during the network training. Extensive experiments demonstrate that the proposed model is superior to the state-of-the-art models.
引用
收藏
页码:2601 / 2612
页数:12
相关论文
共 50 条
  • [31] Differential convolutional neural network
    Sarigul, M.
    Ozyildirim, B. M.
    Avci, M.
    NEURAL NETWORKS, 2019, 116 : 279 - 287
  • [32] Infrared Small Target Detection Based on a Temporally-Aware Fully Convolutional Neural Network
    Zhang, Lei
    Han, Peng
    Xi, Jiahua
    Zuo, Zhengrong
    REMOTE SENSING, 2023, 15 (17)
  • [33] Dendritic convolutional neural network
    Wang, Rong-Long
    Lei, Zhenyu
    Zhang, Zhiming
    Gao, Shangce
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 17 (02) : 302 - 304
  • [34] Clickbait Convolutional Neural Network
    Zheng, Hai-Tao
    Chen, Jin-Yuan
    Yao, Xin
    Sangaiah, Arun Kumar
    Jiang, Yong
    Zhao, Cong-Zhi
    SYMMETRY-BASEL, 2018, 10 (05):
  • [35] Understanding holistic human pose using class-specific convolutional neural network
    Shamsafar, Faranak
    Ebrahimnezhad, Hossein
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (18) : 23193 - 23225
  • [36] Understanding holistic human pose using class-specific convolutional neural network
    Faranak Shamsafar
    Hossein Ebrahimnezhad
    Multimedia Tools and Applications, 2018, 77 : 23193 - 23225
  • [37] The Performance Index of Convolutional Neural Network-Based Classifiers in Class Imbalance Problem
    Liu, Yanchen
    Lai, King Wai Chiu
    PATTERN RECOGNITION, 2023, 137
  • [38] Fake Faces Identification via Convolutional Neural Network
    Mo, Huaxiao
    Chen, Bolin
    Luo, Weiqi
    PROCEEDINGS OF THE 6TH ACM WORKSHOP ON INFORMATION HIDING AND MULTIMEDIA SECURITY (IH&MMSEC'18), 2018, : 43 - 47
  • [39] Attention-aware fully convolutional neural network with convolutional long short-term memory network for ultrasound-based motion tracking
    Huang, Pu
    Yu, Gang
    Lu, Hua
    Liu, Danhua
    Xing, Ligang
    Yin, Yong
    Kovalchuk, Nataliya
    Xing, Lei
    Li, Dengwang
    MEDICAL PHYSICS, 2019, 46 (05) : 2275 - 2285
  • [40] Development of Vegetation Mapping with Deep Convolutional Neural Network
    Suh, Sae-Han
    Jhang, Ji-Eun
    Won, Kwanghee
    Shin, Sung-Y.
    Sung, Chang Oan
    PROCEEDINGS OF THE 2018 CONFERENCE ON RESEARCH IN ADAPTIVE AND CONVERGENT SYSTEMS (RACS 2018), 2018, : 53 - 58