STOCHASTIC FUZZY DIFFERENTIAL EQUATIONS WITH AN APPLICATION

被引:0
作者
Malinowski, Marek T. [1 ]
Michta, Mariusz [1 ,2 ]
机构
[1] Univ Zielona Gora, Fac Math Comp Sci & Econometr, PL-65516 Zielona Gora, Poland
[2] Opole Univ, Inst Math & Informat, PL-45052 Opole, Poland
关键词
fuzzy random variable; fuzzy stochastic process; fuzzy stochastic Lebesgue-Aumann integral; fuzzy stochastic Ito integral; stochastic fuzzy differential equation; stochastic fuzzy integral equation; REPRESENTATION; INTEGRALS;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present the existence and uniqueness of solutions to the stochastic fuzzy differential equations driven by Brownian motion. The continuous dependence on initial condition and stability properties are also established. As an example of application we use some stochastic fuzzy differential equation in a model of population dynamics.
引用
收藏
页码:123 / 143
页数:21
相关论文
共 21 条
[1]   INTEGRALS OF SET-VALUED FUNCTIONS [J].
AUMANN, RJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1965, 12 (01) :1-&
[2]   A DE[0,1] representation of random upper semicontinuos functions [J].
Colubi, A ;
Domínguez-Menchero, JS ;
López-Díaz, M ;
Ralescu, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (11) :3237-3242
[3]  
Diamond P., 1994, METRIC SPACES FUZZY
[4]   Existence and uniqueness of solution for fuzzy random differential equations with non-Lipschitz coefficients [J].
Fei, Welyin .
INFORMATION SCIENCES, 2007, 177 (20) :4329-4337
[5]   Fuzzy stochastic differential systems [J].
Feng, YH .
FUZZY SETS AND SYSTEMS, 2000, 115 (03) :351-363
[6]   INTEGRALS, CONDITIONAL EXPECTATIONS, AND MARTINGALES OF MULTIVALUED FUNCTIONS [J].
HIAI, F ;
UMEGAKI, H .
JOURNAL OF MULTIVARIATE ANALYSIS, 1977, 7 (01) :149-182
[7]  
Hu S., 1997, Handbook of multivalued analysis, DOI 10.1007/978-1-4615-6359-4
[8]   FUZZY DIFFERENTIAL-EQUATIONS [J].
KALEVA, O .
FUZZY SETS AND SYSTEMS, 1987, 24 (03) :301-317
[9]  
Kim JH, 2005, J KOREAN MATH SOC, V42, P153
[10]  
Kisielewicz M., 1991, Differential Inclusions and Optimal Control