Parallel Forward Dynamics: a geometric approach

被引:9
作者
Zamora-Esquivel, Julio [1 ]
Bayro-Corrochano, Eduardo [2 ]
机构
[1] Intel Tecnol Mexico, SA CV, VPG GDC, Mexico City, DF, Mexico
[2] CINVESTAV, Unit Guadalajara, Mexico City, DF, Mexico
来源
IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010) | 2010年
关键词
D O I
10.1109/IROS.2010.5652835
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The authors present a new algorithm to compute the forward Dynamics of n degrees of freedom serial kinematic chains, which is faster than the classical approaches. This algorithm was created rewriting the Lagrange equation in terms of lines and points in the framework of conformal geometric algebra, which allows having a new equation to compute the dynamics with less number of products. This algorithm not only performs less computations but it also takes the advantages of the newest multi core architectures by computing the dynamics in parallel.
引用
收藏
页码:2377 / 2382
页数:6
相关论文
共 9 条
[1]  
ASCHER UM, 1996, FORWARD DYNAMICS ELI
[2]  
Bayro-Corrochano E, 2000, J ROBOTIC SYST, V17, P495, DOI 10.1002/1097-4563(200009)17:9<495::AID-ROB4>3.0.CO
[3]  
2-S
[4]  
BAYROCORROCHANO E, 2001, GEOMETRIC COMPUTING
[5]   KINEMATICS OF ROBOT MANIPULATORS VIA LINE TRANSFORMATIONS [J].
KIM, JH ;
KUMAR, VR .
JOURNAL OF ROBOTIC SYSTEMS, 1990, 7 (04) :649-674
[6]  
Li HB, 2001, GEOMETRIC COMPUTING WITH CLIFFORD ALGEBRAS, P27
[7]  
MCMILLAN S, 1998, INT C ROB AUT LEUV B
[8]  
RAFAEL K, 2005, CONTROL ROBOT MANIPU
[9]  
ZAMORAESQUIVEL J, P ICRA 2006