Divisible cones (part)

被引:37
作者
Benoist, Y [1 ]
机构
[1] Ecole Normale Super, CNRS, F-75230 Paris 05, France
关键词
D O I
10.1215/S0012-7094-03-12014-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A properly convex open cone in R-m is called divisible if there exists a discrete subgroup Gamma of GL(R-m) preserving C such that the quotient Gamma\C is compact. We describe the Zariski closure of such a group Gamma. We show that if C is divisible but is neither a product nor a symmetric cone, then Gamma is Zariski dense in GL(Rm).
引用
收藏
页码:97 / 120
页数:24
相关论文
共 19 条
[1]  
ABELS H, 1982, J LOND MATH SOC, V25, P525
[2]   PARALLELIZABILITY OF PROPER ACTIONS, GLOBAL K-SLICES AND MAXIMAL COMPACT SUBGROUPS [J].
ABELS, H .
MATHEMATISCHE ANNALEN, 1974, 212 (01) :1-19
[3]   Divisible convex [J].
Benoist, Y .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (05) :387-390
[4]   Automorphisms of convex cones [J].
Benoist, Y .
INVENTIONES MATHEMATICAE, 2000, 141 (01) :149-193
[5]  
Benzecri Jean-Paul, 1960, Bull. Soc. Math. France, V88, P229
[6]  
Borel A., 1963, TOPOLOGY, V2, P111, DOI 10.1016/0040-9383(63)90026-0
[7]   CONVEX REAL PROJECTIVE-STRUCTURES ON CLOSED SURFACES ARE CLOSED [J].
CHOI, S ;
GOLDMAN, WM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (02) :657-661
[8]  
GOLDMAN WM, 1990, J DIFFER GEOM, V31, P791
[9]  
Johnson D., 1987, PROGR MATH, V67, P48, DOI 10.1007/978-1-4899-6664-3_3
[10]   DEFORMATION OF LOCALLY FLAT CONNECTIONS [J].
KOSZUL, JL .
ANNALES DE L INSTITUT FOURIER, 1968, 18 (01) :103-&