Constructing flower-like core@shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber

被引:165
|
作者
Zhang, Jingjing [1 ]
Li, Zihan [1 ]
Qi, Xiaosi [1 ,2 ,3 ,4 ]
Gong, Xiu [1 ]
Xie, Ren [1 ]
Deng, Chaoyong
Zhong, Wei [3 ,4 ]
Du, Youwei [3 ,4 ]
机构
[1] Guizhou Univ, Coll Phys, Guizhou Prov Key Lab Photoelect Technol & Applica, Guiyang 550025, Peoples R China
[2] Guizhou Univ, Key Lab Elect Composites Guizhou Prov, Guiyang 550025, Peoples R China
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[4] Nanjing Univ, Jiangsu Prov Lab NanoTechnol, Nanjing 210093, Peoples R China
基金
美国国家科学基金会;
关键词
Core@shell structure; Flower-likeFeSe2@MoSe2 nanocomposites; Broad frequency bandwidth; Microwave absorption; REDUCED GRAPHENE OXIDE; ELECTROMAGNETIC-WAVE ABSORPTION; HIGH-PERFORMANCE; BROAD-BAND; FACILE SYNTHESIS; MICROSPHERES; MOS2; LIGHTWEIGHT; HETEROJUNCTION; NANOSHEETS;
D O I
10.1016/j.compositesb.2021.109067
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To effectively utilize the unique properties of layered transition metal dichalcogenide and the attractive morphology of hierarchical flower for the attenuation of electromagnetic wave, herein, high-efficiency flowerlike core@shell structure FeSe2@MoSe2 nanocomposites were firstly synthesized through a simple in situ hydrothermal reaction on the surfaces of Fe3O4 nanoparticles with the adequate amounts of Mo and Se sources. The obtained results indicated that the designed flower-like core@shell structure FeSe2@MoSe2 nanocomposites with the filler loadings of 30 wt% and 40 wt% presented the optimal reflection loss (RLopt) value of -59.87 dB at 11 GHz with a matching thickness of 3.10 mm and -60.53 dB at 13.52 GHz with a matching thickness of 2.47 mm. And their corresponding effective frequency bandwidth (fb) values were up to 10.0 GHz with a thickness of 3.66 mm and 6.00 GHz with a thickness of 2.12 mm, respectively. It was worth pointing out that the as-prepared flower-like FeSe2@MoSe2 nanocomposite with filler loading of 30 wt% could simultaneously present very extraordinary electromagnetic wave absorption capabilities and broad absorption bandwidth with the very thin matching thicknesses, which was desirable for high-efficient microwave absorbers. Therefore, a simple and effective strategy was proposed to produce flower-like core@shell structure MoSe2-based nanocomposites, which could be applied as the very desirable candidates for high-performance microwave absorption materials.
引用
收藏
页数:11
相关论文
共 41 条
  • [41] Novel morphology-controlled three-dimensional flower-like magnetic CoFe2O4/CoFe-LDHs microsphere for high efficient removal of Orange II
    Zhai, Shiman
    Liu, Jingxin
    Sheng, Jialing
    Xu, Jiangyan
    Jiang, Hongmei
    CHEMICAL ENGINEERING JOURNAL, 2021, 421