Some inequalities involving generalized Bessel functions

被引:27
作者
Baricz, Arpad [1 ]
机构
[1] Univ Babes Bolyai, Fac Econ, RO-400591 Cluj Napoca, Romania
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2007年 / 10卷 / 04期
关键词
Bessel functions; modified Bessel functions; Mahajan's inequality; Jordan's inequality; Redheffer's inequality; Cusa's inequality; sine and hyperbolic sine integral;
D O I
10.7153/mia-10-76
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let up be the generalized and normalized Bessel function depending on parameters b, c, p and let lambda(p) (x) = up (x(2)), x epsilon R. In this paper we extend to the function lambda(p) some wellknown classical inequalities like Mahajan's inequality, Mitrinovic's inequality, improvements of Jordan's inequality, Redheffer's inequality, using an adequate integral representation of the function lambda(p) and the monotone form of l'Hospital's rule. Moreover we prove that the integral, sigma(p) (x) = integral(x)(0) lambda(p) (t) dt is sub-additive (super-additive) under certain conditions on parameters b, c, p.
引用
收藏
页码:827 / 842
页数:16
相关论文
共 31 条
[31]  
Zygmund A., 2002, TRIGNOMETRIC SERIES