The EM field of constant current density distributions in parallelepiped regions

被引:7
作者
Fikioris, JG [1 ]
机构
[1] Natl Tech Univ Athens, Dept Elect & Comp Engn, GR-15773 Athens, Greece
关键词
electromagnetic fields; hybrid methods;
D O I
10.1109/8.719980
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The electromagnetic field vectors (A) over bar, (H) over bar, (E) over bar arising from a constant current density (J) over bar in an electrically small orthogonal parallelepiped region v are obtained analytically and exactly, up to order (kr)(4), af any point (x, y, z) a distance r from the center of v, They are then applied to the solution of an electric field integrodifferential equation (EFIDE) for which the region V has been divided into small parallelepiped cells, These new results are directly applicable to the evaluation of electromagnetic field interaction with natural media.
引用
收藏
页码:1358 / 1364
页数:7
相关论文
共 14 条
[1]  
BOERMSA J, 1979, 197911 EINDH U TECHN
[2]  
COLBURN JS, 1995, J ELECTROMAGNET WAVE, V9, P1249
[3]   ELECTROMAGNETIC FIELD INSIDE A CURRENT-CARRYING REGION [J].
FIKIORIS, JG .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (11) :1617-+
[4]   Electromagnetic field in the source region of continuously varying current density [J].
Fikioris, JG .
QUARTERLY OF APPLIED MATHEMATICS, 1996, 54 (02) :201-209
[5]  
FIKIORIS JG, 1988, J ELECTROMAGNET WAVE, V2, P141
[6]  
GAN H, 1995, J ELECTROMAGNET WAVE, V9, P1339
[7]  
GRADSHTEYN IS, 1965, TABLES INTERNALS SER
[8]  
Jones D, 1964, THEORY ELECTROMAGNET
[9]  
Kellogg O D., 1953, Foundations of Potential Theory
[10]  
MULLER C., 1969, Foundations of the Mathematical Theory of Electromagnetic Waves