A multiobjective spatial fuzzy clustering algorithm for image segmentation

被引:69
作者
Zhao, Feng [1 ]
Liu, Hanqiang [2 ]
Fan, Jiulun [1 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Telecommun & Informat Engn, Xian 710061, Peoples R China
[2] Shaanxi Normal Univ, Sch Comp Sci, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Image segmentation; Multiobjective optimization; Fuzzy clustering; Non-local spatial information; Cluster validity measure; C-MEANS ALGORITHM; PIXEL CLASSIFICATION; ROBUST; INFORMATION;
D O I
10.1016/j.asoc.2015.01.039
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article describes a multiobjective spatial fuzzy clustering algorithm for image segmentation. To obtain satisfactory segmentation performance for noisy images, the proposed method introduces the non-local spatial information derived from the image into fitness functions which respectively consider the global fuzzy compactness and fuzzy separation among the clusters. After producing the set of non-dominated solutions, the final clustering solution is chosen by a cluster validity index utilizing the non-local spatial information. Moreover, to automatically evolve the number of clusters in the proposed method, a real-coded variable string length technique is used to encode the cluster centers in the chromosomes. The proposed method is applied to synthetic and real images contaminated by noise and compared with k-means, fuzzy c-means, two fuzzy c-means clustering algorithms with spatial information and a multiobjective variable string length genetic fuzzy clustering algorithm. The experimental results show that the proposed method behaves well in evolving the number of clusters and obtaining satisfactory performance on noisy image segmentation. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:48 / 57
页数:10
相关论文
共 34 条
[1]   A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data [J].
Ahmed, MN ;
Yamany, SM ;
Mohamed, N ;
Farag, AA ;
Moriarty, T .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (03) :193-199
[2]  
[Anonymous], 1992, R. woods digital image processing
[3]  
[Anonymous], Pattern Recognition with Fuzzy Objective Function Algorithms,, DOI 10.1007/978-1-4757-0450-1_3
[4]   Multiobjective genetic clustering for pixel classification in remote sensing imagery [J].
Bandyopadhyay, Sanghamitra ;
Maulik, Ujjwal ;
Mukhopadhyay, Anirban .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (05) :1506-1511
[5]   Robust and automated unimodal histogram thresholding and potential applications [J].
Baradez, MO ;
McGuckin, CP ;
Forraz, N ;
Pettengell, R ;
Hoppe, A .
PATTERN RECOGNITION, 2004, 37 (06) :1131-1148
[6]   A non-local algorithm for image denoising [J].
Buades, A ;
Coll, B ;
Morel, JM .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, :60-65
[7]   Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation [J].
Cai, Weiling ;
Chen, Songean ;
Zhang, Daoqiang .
PATTERN RECOGNITION, 2007, 40 (03) :825-838
[8]   A non-local fuzzy segmentation method: Application to brain MRI [J].
Caldairou, Benoit ;
Passat, Nicolas ;
Habas, Piotr A. ;
Studholme, Colin ;
Rousseau, Francois .
PATTERN RECOGNITION, 2011, 44 (09) :1916-1927
[9]   Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure [J].
Chen, SC ;
Zhang, DQ .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (04) :1907-1916
[10]   A clustering fuzzy approach for image segmentation [J].
Cinque, L ;
Foresti, G ;
Lombardi, L .
PATTERN RECOGNITION, 2004, 37 (09) :1797-1807