Prediction of Type and Recurrence of Atrial Fibrillation after Catheter Ablation via Left Atrial Electroanatomical Voltage Mapping Registration and Multilayer Perceptron Classification: A Retrospective Study

被引:2
作者
An, Qiyuan [1 ]
McBeth, Rafe [2 ,3 ]
Zhou, Houliang [1 ]
Lawlor, Bryan [2 ]
Nguyen, Dan [2 ]
Jiang, Steve [2 ]
Link, Mark S. [2 ]
Zhu, Yingying [1 ]
机构
[1] Univ Texas Arlington, Comp Sci & Engn, Arlington, TX 76019 USA
[2] Univ Texas Southwestern Med Ctr Dallas, Dept Radiat Oncol, Med Artificial Intelligence & Automat Lab, Dallas, TX 75390 USA
[3] Univ Texas Southwestern Med Ctr Dallas, Cardiac Electrophysiol, Dallas, TX 75390 USA
关键词
registration; atrial fibrillation; electroanatomical voltage mapping;
D O I
10.3390/s22114058
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Atrial fibrillation (AF) is a common cardiac arrhythmia and affects one to two percent of the population. In this work, we leverage the three-dimensional atrial endocardial unipolar/bipolar voltage map to predict the AF type and recurrence of AF in 1 year. This problem is challenging for two reasons: (1) the unipolar/bipolar voltages are collected at different locations on the endocardium and the shapes of the endocardium vary widely in different patients, and thus the unipolar/bipolar voltage maps need aligning to the same coordinate; (2) the collected dataset size is very limited. To address these issues, we exploit a pretrained 3D point cloud registration approach and finetune it on left atrial voltage maps to learn the geometric feature and align all voltage maps into the same coordinate. After alignment, we feed the unipolar/bipolar voltages from the registered points into a multilayer perceptron (MLP) classifier to predict whether patients have paroxysmal or persistent AF, and the risk of recurrence of AF in 1 year for patients in sinus rhythm. The experiment shows our method classifies the type and recurrence of AF effectively.
引用
收藏
页数:9
相关论文
共 16 条
  • [1] PointNetLK: Robust & Efficient Point Cloud Registration using PointNet
    Aoki, Yasuhiro
    Goforth, Hunter
    Srivatsan, Rangaprasad Arun
    Lucey, Simon
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7156 - 7165
  • [2] BESL PJ, 1992, P SOC PHOTO-OPT INS, V1611, P586, DOI 10.1117/12.57955
  • [3] Worldwide Epidemiology of Atrial Fibrillation A Global Burden of Disease 2010 Study
    Chugh, Sumeet S.
    Havmoeller, Rasmus
    Narayanan, Kumar
    Singh, David
    Rienstra, Michiel
    Benjamin, Emelia J.
    Gillum, Richard F.
    Kim, Young-Hoon
    McAnulty, John H.
    Zheng, Zhi-Jie
    Forouzanfar, Mohammad H.
    Naghavi, Mohsen
    Mensah, George A.
    Ezzati, Majid
    Murray, Christopher J. L.
    [J]. CIRCULATION, 2014, 129 (08) : 837 - 847
  • [4] Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis
    Dai, Angela
    Qi, Charles Ruizhongtai
    Niessner, Matthias
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6545 - 6554
  • [5] Horowitz MB, 2014, IEEE INT CONF ROBOT, P1148, DOI 10.1109/ICRA.2014.6906998
  • [6] Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: Population-based estimates
    Kannel, WB
    Wolf, PA
    Benjamin, EJ
    Levy, D
    [J]. AMERICAN JOURNAL OF CARDIOLOGY, 1998, 82 (8A) : 2N - 8N
  • [7] Kingma DP, 2014, ADV NEUR IN, V27
  • [8] Nair V., 2010, P 27 INT C MACH LEAR, P807
  • [9] Iterative Global Similarity Points : A robust coarse-to-fine integration solution for pairwise 3D point cloud registration
    Pan, Yue
    Yang, Bisheng
    Liang, Fuxun
    Dong, Zhen
    [J]. 2018 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2018, : 180 - 189
  • [10] Rosenblatt F., 1962, PRINCIPLES NEURODYNA