3D Bioprinting of Murine Cortical Astrocytes for Engineering Neural-Like Tissue

被引:9
|
作者
de Melo, Bruna A. G. [1 ]
Cruz, Elisa M. [1 ]
Ribeiro, Tais N. [1 ]
Mundim, Mayara, V [1 ]
Porcionatto, Marimelia A. [1 ]
机构
[1] Univ Fed Sao Paulo, Escola Paulista Med, Dept Biochem, Sao Paulo, Brazil
来源
基金
巴西圣保罗研究基金会;
关键词
STEM-CELL; IN-VITRO; FIBRIN; GELATIN; ACID;
D O I
10.3791/62691
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Astrocytes are glial cells with an essential role in the central nervous system (CNS), including neuronal support and functionality. These cells also respond to neural injuries and act to protect the tissue from degenerative events. In vitro studies of astrocytes' functionality are important to elucidate the mechanisms involved in such events and contribute to developing therapies to treat neurological disorders. This protocol describes a method to biofabricate a neural-like tissue structure rich in astrocytes by 3D bioprinting astrocytes-laden bioink. An extrusion-based 3D bioprinter was used in this work, and astrocytes were extracted from C57Bl/6 mice pups' brain cortices. The bioink was prepared by mixing cortical astrocytes from up to passage 3 to a biomaterial solution composed of gelatin, gelatin-methacryloyl (GelMA), and fibrinogen, supplemented with laminin, which presented optimal bioprinting conditions. The 3D bioprinting conditions minimized cell stress, contributing to the high viability of the astrocytes during the process, in which 74.08% +/- 1.33% of cells were viable right after bioprinting. After 1 week of incubation, the viability of astrocytes significantly increased to 83.54% +/- 3.00%, indicating that the 3D construct represents a suitable microenvironment for cell growth. The biomaterial composition allowed cell attachment and stimulated astrocytic behavior, with cells expressing the specific astrocytes marker glial fibrillary acidic protein (GFAP) and possessing typical astrocytic morphology. This reproducible protocol provides a valuable method to biofabricate 3D neurallike tissue rich in astrocytes that resembles cells' native microenvironment, useful to researchers that aim to understand astrocytes' functionality and their relation to the mechanisms involved in neurological diseases.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Advances in 3D Bioprinting for Neural Tissue Engineering
    Lee, Se-Jun
    Esworthy, Timothy
    Stake, Seth
    Miao, Shida
    Zuo, Yi Y.
    Harris, Brent T.
    Zhang, Lijie Grace
    ADVANCED BIOSYSTEMS, 2018, 2 (04)
  • [2] 3D Printing and Bioprinting Nerve Conduits for Neural Tissue Engineering
    Yu, Xiaoling
    Zhang, Tian
    Li, Yuan
    POLYMERS, 2020, 12 (08)
  • [3] Tissue engineering by decellularization and 3D bioprinting
    Garreta, Elena
    Oria, Roger
    Tarantino, Carolina
    Pla-Roca, Mateu
    Prado, Patricia
    Fernandez-Aviles, Francisco
    Maria Campistol, Josep
    Samitier, Josep
    Montserrat, Nuria
    MATERIALS TODAY, 2017, 20 (04) : 166 - 178
  • [4] 3D bioprinting in cardiac tissue engineering
    Wang, Zihan
    Wang, Ling
    Li, Ting
    Liu, Sitian
    Guo, Baolin
    Huang, Wenhua
    Wu, Yaobin
    THERANOSTICS, 2021, 11 (16): : 7948 - 7969
  • [5] Hydrocolloids for tissue engineering and 3D bioprinting
    Yildirim-Semerci, Ozum
    Onbas, Rabia
    Bilginer-Kartal, Rumeysa
    Arslan-Yildiz, Ahu
    INNOVATION AND EMERGING TECHNOLOGIES, 2024, 11
  • [6] Cell reprogramming by 3D bioprinting of human fibroblasts in polyurethane hydrogel for fabrication of neural-like constructs
    Ho, Lin
    Hsu, Shan-hui
    ACTA BIOMATERIALIA, 2018, 70 : 57 - 70
  • [7] Inkjet 3D bioprinting for tissue engineering and pharmaceutics
    Zhao, Deng-ke
    Xu, He-qi
    Yin, Jun
    Yang, Hua-yong
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2022, 23 (12): : 955 - 973
  • [8] 3D Bioprinting of Hydrogels for Cartilage Tissue Engineering
    Huang, Jianghong
    Xiong, Jianyi
    Wang, Daping
    Zhang, Jun
    Yang, Lei
    Sun, Shuqing
    Liang, Yujie
    GELS, 2021, 7 (03)
  • [9] 3D Bioprinting Technologies for Tissue Engineering Applications
    Gu, Bon Kang
    Choi, Dong Jin
    Park, Sang Jun
    Kim, Young-Jin
    Kim, Chun-Ho
    CUTTING-EDGE ENABLING TECHNOLOGIES FOR REGENERATIVE MEDICINE, 2018, 1078 : 15 - 28
  • [10] Potential of 3D Bioprinting Techniques in Tissue Engineering
    Ko, Yunjeh
    Kim, Chun-Ho
    Kwon, Oh Hyeong
    POLYMER-KOREA, 2022, 46 (03) : 301 - 317