The protein-protein interaction network alignment using recurrent neural network

被引:4
作者
Mahdipour, Elham [1 ]
Ghasemzadeh, Mohammad [2 ]
机构
[1] Khavaran Inst Higher Educ, Comp Engn Dept, Mashhad, Razavi Khorasan, Iran
[2] Yazd Univ, Comp Engn, Yazd, Iran
关键词
Network alignment; Protein-protein interaction; Deep learning; Recurrent neural network; GLOBAL ALIGNMENT; MAXIMIZING ACCURACY; BIOLOGICAL NETWORKS; DATABASE; NODE;
D O I
10.1007/s11517-021-02428-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The main challenge of biological network alignment is that the problem of finding the alignments in two graphs is NP-hard. The discovery of protein-protein interaction (PPI) networks is of great importance in bioinformatics due to their utilization in identifying the cellular pathways, finding new medicines, and disease recognition. In this regard, we describe the network alignment method in the form of a classification problem for the very first time and introduce a deep network that finds the alignment of nodes present in the two networks. We call this method RENA, which means Network Alignment using REcurrent neural network. The proposed solution consists of three steps; in the first phase, we obtain the sequence and topological similarities from the networks' structure. For the second phase, the dataset needed for the transformation of the problem into a classification problem is created from obtained features. In the third phase, we predict the nodes' alignment between two networks using deep learning. We used Biogrid dataset for RENA evaluation. The RENA method is compared with three classification approaches of support vector machine, K-nearest neighbors, and linear discriminant analysis. The experimental results demonstrate the efficiency of the RENA method and 100% accuracy in PPI network alignment prediction.
引用
收藏
页码:2263 / 2286
页数:24
相关论文
共 60 条
  • [1] DDGK: Learning Graph Representations for Deep Divergence Graph Kernels
    Al-Rfou, Rami
    Zelle, Dustin
    Perozzi, Bryan
    [J]. WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 37 - 48
  • [2] SPINAL: scalable protein interaction network alignment
    Aladag, Ahmet E.
    Erten, Cesim
    [J]. BIOINFORMATICS, 2013, 29 (07) : 917 - 924
  • [3] Bengio Y, 2012, JMLR WORKSHOP C P, P17
  • [4] Expansion of the Gene Ontology knowledgebase and resources
    Carbon, S.
    Dietze, H.
    Lewis, S. E.
    Mungall, C. J.
    Munoz-Torres, M. C.
    Basu, S.
    Chisholm, R. L.
    Dodson, R. J.
    Fey, P.
    Thomas, P. D.
    Mi, H.
    Muruganujan, A.
    Huang, X.
    Poudel, S.
    Hu, J. C.
    Aleksander, S. A.
    McIntosh, B. K.
    Renfro, D. P.
    Siegele, D. A.
    Antonazzo, G.
    Attrill, H.
    Brown, N. H.
    Marygold, S. J.
    McQuilton, P.
    Ponting, L.
    Millburn, G. H.
    Rey, A. J.
    Stefancsik, R.
    Tweedie, S.
    Falls, K.
    Schroeder, A. J.
    Courtot, M.
    Osumi-Sutherland, D.
    Parkinson, H.
    Roncaglia, P.
    Lovering, R. C.
    Foulger, R. E.
    Huntley, R. P.
    Denny, P.
    Campbell, N. H.
    Kramarz, B.
    Patel, S.
    Buxton, J. L.
    Umrao, Z.
    Deng, A. T.
    Alrohaif, H.
    Mitchell, K.
    Ratnaraj, F.
    Omer, W.
    Rodriguez-Lopez, M.
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) : D331 - D338
  • [5] Optimizing a global alignment of protein interaction networks
    Chindelevitch, Leonid
    Ma, Cheng-Yu
    Liao, Chung-Shou
    Berger, Bonnie
    [J]. BIOINFORMATICS, 2013, 29 (21) : 2765 - 2773
  • [6] A multiobjective memetic algorithm for PPI network alignment
    Clark, Connor
    Kalita, Jugal
    [J]. BIOINFORMATICS, 2015, 31 (12) : 1988 - 1998
  • [7] Crawford J, 2015, IEEE INT C BIOINFORM, P220, DOI 10.1109/BIBM.2015.7359684
  • [8] Deep Adversarial Network Alignment
    Derr, Tyler
    Karimi, Hamid
    Liu, Xiaorui
    Xu, Jiejun
    Tang, Jiliang
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 352 - 361
  • [9] El-Kebir M, 2011, LECT N BIOINFORMAT, V7036, P225, DOI 10.1007/978-3-642-24855-9_20
  • [10] Ensembl, 2019, Ensembl Genome Browser [WWW Document]