Covariant Poisson brackets in geometric field theory

被引:47
作者
Forger, M
Romero, SV
机构
[1] Univ Sao Paulo, Inst Matemat & Estatist, Dept Matemat Aplicada, BR-05311970 Sao Paulo, Brazil
[2] Univ Fed Vicosa, Dept Matemat, BR-36571000 Vicosa, MG, Brazil
关键词
D O I
10.1007/s00220-005-1287-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish a link between the multisymplectic and the covariant phase space approach to geometric field theory by showing how to derive the symplectic form on the latter, as introduced by Crnkovic-Witten and Zuckerman, from the multisymplectic form. The main result is that the Poisson bracket associated with this symplectic structure, according to the standard rules, is precisely the covariant bracket due to Peierls and DeWitt.
引用
收藏
页码:375 / 410
页数:36
相关论文
共 39 条
  • [31] THE COMMUTATION LAWS OF RELATIVISTIC FIELD THEORY
    PEIERLS, RE
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1952, 214 (1117): : 143 - 157
  • [32] ROMERO SV, 2001, THESIS IME USP
  • [33] SALLES MO, 2004, THESIS IME USP
  • [34] Saunders D.J., 1989, The Geometry of Jet Bundles, V142
  • [35] Sternberg S., 1977, GEOMETRIC ASYMPTOTIC
  • [36] Wald R M., 1984, GEN RELAT GRAVIT, P491, DOI DOI 10.7208/CHICAGO/9780226870373.001.0001
  • [37] Geodesic fields in the calculus of variation for multiple integrals
    Weyl, H
    [J]. ANNALS OF MATHEMATICS, 1935, 36 : 607 - 629
  • [38] Woodhouse N., 1992, GEOMETRIC QUANTIZATI
  • [39] Zuckerman G. J., 1987, MATH ASPECTS STRING, P259