Covariant Poisson brackets in geometric field theory

被引:47
作者
Forger, M
Romero, SV
机构
[1] Univ Sao Paulo, Inst Matemat & Estatist, Dept Matemat Aplicada, BR-05311970 Sao Paulo, Brazil
[2] Univ Fed Vicosa, Dept Matemat, BR-36571000 Vicosa, MG, Brazil
关键词
D O I
10.1007/s00220-005-1287-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish a link between the multisymplectic and the covariant phase space approach to geometric field theory by showing how to derive the symplectic form on the latter, as introduced by Crnkovic-Witten and Zuckerman, from the multisymplectic form. The main result is that the Poisson bracket associated with this symplectic structure, according to the standard rules, is precisely the covariant bracket due to Peierls and DeWitt.
引用
收藏
页码:375 / 410
页数:36
相关论文
共 39 条
  • [21] Kanatchikov I. V., 1997, Reports on Mathematical Physics, V40, P225, DOI 10.1016/S0034-4877(97)85919-8
  • [22] KIJOWSKI J, 1976, COMMUN MATH PHYS, V46, P183, DOI 10.1007/BF01608496
  • [23] FINITE-DIMENSIONAL CANONICAL FORMALISM IN CLASSICAL FIELD-THEORY
    KIJOWSKI, J
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 30 (02) : 99 - 128
  • [24] Kijowski J., 1979, A symplectic framework for field theories
  • [25] KIJOWSKI J, 1974, B ACAD POL SCI SMAP, V22, P1219
  • [26] KIJOWSKI J, 1975, GEOMETRIE SYMPLECTIQ, P347
  • [27] Kolar I., 1993, NATURAL OPERATIONS D
  • [28] Lang S., 1985, DIFFERENTIAL MANIFOL
  • [29] Multisymplectic geometry, variational integrators, and nonlinear PDEs
    Marsden, JE
    Patrick, GW
    Shkoller, S
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 199 (02) : 351 - 395
  • [30] PALAIS R, 1968, FDN NONLINEAR GLOBAL