Flexible Laser-Induced Graphene for Nitrogen Sensing in Soil

被引:156
作者
Garland, Nate T. [1 ]
McLamore, Eric S. [4 ]
Cavallaro, Nicholas D. [4 ]
Mendivelso-Perez, Deyny [2 ,5 ]
Smith, Emily A. [2 ,5 ]
Jing, Dapeng [3 ]
Claussen, Jonathan C. [1 ,5 ]
机构
[1] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Chem, Ames, IA 50011 USA
[3] Iowa State Univ, Mat Anal & Res Lab, Ames, IA 50011 USA
[4] Univ Florida, Inst Food & Agr Sci, Agr & Biol Engn Dept, Gainesville, FL 32611 USA
[5] Ames Lab, Ames, IA 50011 USA
基金
美国食品与农业研究所; 美国国家科学基金会;
关键词
graphene; solid-contact ion-selective electrode (ISE); soil fertilizer; potentiometry; precision agriculture; ION-SELECTIVE ELECTRODES; INKJET PRINTED GRAPHENE; SOLID-CONTACT; CARBON NANOTUBES; REDUCED GRAPHENE; SENSOR; OXIDE; INKS; POLYIMIDE; LAYERS;
D O I
10.1021/acsami.8b10991
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Flexible graphene electronics are rapidly gaining interest, but their widespread implementation has been impeded by challenges with ink preparation, ink printing, and postprint annealing processes. Laser-induced graphene (LIG) promises a facile alternative by creating flexible graphene electronics on polyimide substrates through the one-step laser writing fabrication method. Herein, we demonstrate the use of LIG, created with a low-cost UV laser, for electrochemical ion-selective sensing of plant available nitrogen (i.e., both ammonium and nitrate ions: NH4+ and NO3-) in soil samples. The laser used to create the LIG was operated at distinct pulse widths (10, 20, 30, 40, and 50 ms) to maximize the LIG electrochemical reactivity. Results illustrated that a laser pulse width of 20 ms led to a high percentage of sp2 carbon (77%) and optimal peak oxidation current of 120 mu A during cyclic voltammetry of ferro/ferricyanide. Therefore, LIG electrodes created with a 20 ms pulse width were consequently functionalized with distinct ionophores specific to NH4+ (nonactin) or NO3-(tridodecylmethylarnmonium nitrate) within poly(vinyl chloride)-based membranes to create distinct solid contact ion-selective electrodes (SC-ISEs) for NH4+ and NO3- ion sensing, respectively. The LIG SC-ISEs displayed near Nernstian sensitivities of 51.7 +/- 7.8 mV/dec (NH4+) and 54.8 +/- 2.5 mV/dec (NO3-), detection limits of 28.2 25.0 /1M (NH4+) and 20.6 +/- 14.8 mu M (NO3-), low long-term drift of 0.93 mV/h (NH4+ sensors) and 5.3 pV/h (NO(3)(-)sensors), and linear sensing ranges of 10(-5)-10(-1) M for both sensors. Moreover, soil slurry sensing was performed, and recovery percentages of 96% and 95% were obtained for added NH4+ and NO3-, respectively. These results, combined with a facile fabrication that does not require metallic nanoparticle decoration, make these LIG electrochemical sensors appealing for a wide range of in-field or point-of-service applications for soil health management.
引用
收藏
页码:39124 / 39133
页数:10
相关论文
共 62 条
[1]   Graphene Electronic Tattoo Sensors [J].
Ameri, Shideh Kabiri ;
Ho, Rebecca ;
Jang, Hongwoo ;
Tao, Li ;
Wang, Youhua ;
Wang, Liu ;
Schnyer, David M. ;
Akinwande, Deji ;
Lu, Nanshu .
ACS NANO, 2017, 11 (08) :7634-7641
[2]  
[Anonymous], 1980, ELECTROCHEMICAL METH
[3]   Electrochemical sensors [J].
Bakker, Eric ;
Qin, Yu .
ANALYTICAL CHEMISTRY, 2006, 78 (12) :3965-3983
[4]   Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring [J].
Bandodkar, Amay J. ;
Molinnus, Denise ;
Mirza, Omar ;
Guinovart, Tomas ;
Windmiller, Joshua R. ;
Valdes-Ramirez, Gabriela ;
Andrade, Francisco J. ;
Schoening, Michael J. ;
Wang, Joseph .
BIOSENSORS & BIOELECTRONICS, 2014, 54 :603-609
[5]   Development of a wearable electrochemical sensor for voltammetric determination of chloride ions [J].
Bujes-Garrido, J. ;
Arcos-Martinez, M. J. .
SENSORS AND ACTUATORS B-CHEMICAL, 2017, 240 :224-228
[6]   Nanostructuring Platinum Nanoparticles on Multilayered Graphene Petal Nanosheets for Electrochemical Biosensing [J].
Claussen, Jonathan C. ;
Kumar, Anurag ;
Jaroch, David B. ;
Khawaja, M. Haseeb ;
Hibbard, Allison B. ;
Porterfield, D. Marshall ;
Fisher, Timothy S. .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (16) :3399-3405
[7]   Electrochemical Biosensor of Nanocube-Augmented Carbon Nanotube Networks [J].
Claussen, Jonathan C. ;
Franklin, Aaron D. ;
ul Haque, Aeraj ;
Porterfield, D. Marshall ;
Fisher, Timothy S. .
ACS NANO, 2009, 3 (01) :37-44
[8]   Superhydrophobic inkjet printed flexible graphene circuits via direct-pulsed laser writing [J].
Das, Suprem R. ;
Srinivasan, Srilok ;
Stromberg, Loreen R. ;
He, Qing ;
Garland, Nathaniel ;
Straszheim, Warren E. ;
Ajayan, Pulickel M. ;
Balasubramanian, Ganesh ;
Claussen, Jonathan C. .
NANOSCALE, 2017, 9 (48) :19058-19065
[9]   3D nanostructured inkjet printed graphene via UV-pulsed laser irradiation enables paper-based electronics and electrochemical devices [J].
Das, Suprem R. ;
Nian, Qiong ;
Cargill, Allison A. ;
Hondred, John A. ;
Ding, Shaowei ;
Saei, Mojib ;
Cheng, Gary J. ;
Claussen, Jonathan C. .
NANOSCALE, 2016, 8 (35) :15870-15879
[10]   Laser-induced graphene fibers [J].
Duy, Luong Xuan ;
Peng, Zhiwei ;
Li, Yilun ;
Zhang, Jibo ;
Ji, Yongsung ;
Tour, James M. .
CARBON, 2018, 126 :472-479