Recognition by noncommuting graph of finite simple groups L 4(q)

被引:4
作者
Akbari, M. [1 ]
Kheirabadi, M. [1 ]
Moghaddamfar, A. R. [1 ,2 ]
机构
[1] KN Toosi Univ Technol, Dept Math, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
noncommuting graph; spectrum; prime graph; projective special linear group L-4(q); recognition by noncommuting graph; COMMUTING GRAPH; LIE TYPE; COMPONENTS; EVEN; FIELD;
D O I
10.1007/s11464-010-0085-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a nonabelian group. We define the noncommuting graph a double dagger(G) of G as follows: its vertex set is G\Z(G), the set of non-central elements of G, and two different vertices x and y are joined by an edge if and only if x and y do not commute as elements of G, i.e., [x, y] not equal 1. We prove that if L a {L (4)(7), L (4)(11), L (4)(13), L (4)(16), L (4)(17)} and G is a finite group such that a double dagger(G) a parts per thousand... a double dagger(L), then G a parts per thousand... L.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 36 条
[1]   Non-commuting graph of a group [J].
Abdollahi, A ;
Akbari, S ;
Maimani, HR .
JOURNAL OF ALGEBRA, 2006, 298 (02) :468-492
[2]  
Abdollahi A., 2009, BEITRAGE ALGEBRA GEO, V50, P443
[3]  
Bondy J.A., 2008, GTM
[4]   Spectra of finite linear and unitary groups [J].
Buturlakin, A. A. .
ALGEBRA AND LOGIC, 2008, 47 (02) :91-99
[5]  
Chen M. X., 2007, J SUZHOU U NATURAL S, V23, P1
[6]  
Conway J. H., 1985, ATLAS of Finite Groups
[7]  
GRUENBERG KW, 1979, LONDON MATH SOC LECT, V36, P71
[8]   PRIME GRAPH COMPONENTS OF THE SIMPLE-GROUPS OF LIE TYPE OVER THE FIELD OF EVEN CHARACTERISTIC [J].
IIYORI, N ;
YAMAKI, H .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1991, 67 (03) :82-83
[9]   PRIME GRAPH COMPONENTS OF THE SIMPLE-GROUPS OF LIE TYPE OVER THE FIELD OF EVEN CHARACTERISTIC [J].
IIYORI, N ;
YAMAKI, H .
JOURNAL OF ALGEBRA, 1993, 155 (02) :335-343
[10]   Prime graph components of the simple groups of Lie type over the field of even characteristic (vol 155, pg 335, 1993) [J].
Iiyori, N ;
Yamaki, H .
JOURNAL OF ALGEBRA, 1996, 181 (02) :659-659