Wet Electrospun Nanofibers-Fortified Gelatin/Alginate-Based Nanocomposite as a Single-Dose Biomimicking Skin Substitute

被引:21
作者
Aboomeirah, Amany A. [1 ]
Sarhan, Wessam A. [1 ]
Khalil, Eman A. [2 ]
Abdellatif, Ahmed [2 ]
Dena, Ahmed S. Abo [1 ,3 ]
El-Sherbiny, Ibrahim M. [1 ]
机构
[1] Zewail City Sci & Technol, Ctr Mat Sci CMS, Nanomed Lab, Giza 12578, Egypt
[2] Amer Univ Cairo, Sch Sci & Engn, Dept Biol, New Cairo 11835, Egypt
[3] Natl Org Drug Control & Res NODCAR, Pharmaceut Chem Dept, Giza, Egypt
关键词
Nanofibers; Hydrogel; Nanocomposite; Wound healing; Skin substitute; IN-VIVO EVALUATION; HYALURONIC-ACID; ANTIBACTERIAL ACTIVITY; PHENOLIC-ACIDS; ANTIOXIDANT; HYDROGELS; SCAFFOLD; HYDROXYAPATITE; FABRICATION; COMPOSITES;
D O I
10.1021/acsabm.2c00147
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report the development and evaluation of a series of well-designed single-dose extracellular matrix (ECM)-mimicking nanofibers (NFs)-reinforced hydrogel (HG)-based skin substitute for wound healing. The HG matrix of the proposed skin substitute is composed of gelatin (GE) and sodium alginate (SA), and incorporates hyaluronic acid (HA) as a key component of the natural ECM, as well as the antimicrobial Punica granatum extract (PE). This HG nanocomposite was cross-linked by the biocompatible N-(3-(dimethylamino)propyl)-N'-ethylcarbodiimide hydrochloride (EDC) cross-linker, and was reinforced with fragmented trans-ferulic acid (FA)-loaded cellulose acetate/polycaprolactone (PCL/CA) NFs. The NFs were obtained via wet electrospinning into a poly(vinyl alcohol) (PVA) coagulating solution to closely resemble the porous structure of the ECM fibers, which facilitates cell migration, attachment, and proliferation. The proposed design of the skin substitute allows adjustable mechanical characteristics and outstanding physical properties (swelling and biodegradability), as well as an excellent porous microstructure. The developed skin substitutes were characterized using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and electron microscopy. In addition, the biodegradability, biocompatibility, bioactivity, mechanical, and in vitro drug release characteristics were investigated. Moreover, an in vivo excisional full-thickness defect model was conducted to assess skin regeneration and healing effectiveness. The average diameters of the plain and FA-loaded NFs are 210 +/- 12 nm and 452 +/- 25 nm, respectively. The developed ECM-mimicking skin substitutes demonstrated good antibacterial activity, free-radical scavenging activity, cytocompatibility, porosity, water absorption ability, and good biodegradability. In vivo application of the ECM-mimicking skin substitutes revealed their excellent wound-healing activity and their suitability for single-dose treatment of deep wounds with reducing the wound diameter to 0.95 mm after 15 days of treatment. Moreover, the histological investigation of the wound area demonstrated that the applied skin substitutes have not only enhanced the wound healing progress, but also can participate in improving the quality of the regenerated skin in the treated area via facilitating collagen fibers regeneration and deposition.
引用
收藏
页码:3678 / 3694
页数:17
相关论文
共 65 条
[1]  
Abou Zekry S S., 2020, Wound Medicine, V28, P100181, DOI [10.1016/j.wndm.2020.100181, DOI 10.1016/J.WNDM.2020.100181]
[2]   Freeze-gelled alginate/gelatin scaffolds for wound healing applications: An in vitro, in vivo study [J].
Afjoul, Homa ;
Shamloo, Amir ;
Kamali, Ali .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 113
[3]   Antibacterial action of several tannins against Staphylococcus aureus [J].
Akiyama, H ;
Fujii, K ;
Yamasaki, O ;
Oono, T ;
Iwatsuki, K .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2001, 48 (04) :487-491
[4]   Single-Dose Electrospun Nanoparticles-in-Nanofibers Wound Dressings with Enhanced Epithelialization, Collagen Deposition, and Granulation Properties [J].
Ali, Isra H. ;
Khalil, Islam A. ;
El-Sherbiny, Ibrahim M. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (23) :14453-14469
[5]  
Ali S, 2014, MACROMOL RES, V22, P562
[6]  
Ali SI., 2014, INT J PHARM CLIN RES, V6, P348, DOI DOI 10.5530/RJPS.2013.4.3
[7]  
[Anonymous], CLSI TECHNICAL REPOR, V11th
[8]   Fabrication and characterization of chitosan-gelatin/nanohydroxyapatite-polyaniline composite with potential application in tissue engineering scaffolds [J].
Azhar, Fahimeh Farshi ;
Olad, Ali ;
Salehi, Roya .
DESIGNED MONOMERS AND POLYMERS, 2014, 17 (07) :654-667
[9]  
Bainbridge P, 2013, J WOUND CARE, V22, P407
[10]   Microporous Dermal-Mimetic Electrospun Scaffolds Pre-Seeded with Fibroblasts Promote Tissue Regeneration in Full-Thickness Skin Wounds [J].
Bonvallet, Paul P. ;
Schultz, Matthew J. ;
Mitchell, Elizabeth H. ;
Bain, Jennifer L. ;
Culpepper, Bonnie K. ;
Thomas, Steven J. ;
Bellis, Susan L. .
PLOS ONE, 2015, 10 (03)