FusedMM: A Unified SDDMM-SpMM Kernel for Graph Embedding and Graph Neural Networks

被引:20
|
作者
Rahman, Md Khaledur [1 ]
Sujon, Majedul Hague [1 ]
Azad, Ariful [1 ]
机构
[1] Indiana Univ, Luddy Sch Informat Comp & Engn, Bloomington, IN 47405 USA
来源
2021 IEEE 35TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS) | 2021年
关键词
message passing; GNN; graph embedding;
D O I
10.1109/IPDPS49936.2021.00034
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We develop a fused matrix multiplication kernel that unifies sampled dense-dense matrix multiplication and sparse-dense matrix multiplication under a single operation called FusedMM. By using user-defined functions, FusedMM can capture almost all computational patterns needed by popular graph embedding and GNN approaches. FusedMM is an order of magnitude faster than its equivalent kernels in Deep Graph Library. The superior performance of FusedMM comes from the low-level vectorized kernels, a suitable load balancing scheme and an efficient utilization of the memory bandwidth. FusedMM can tune its performance using a code generator and perform equally well on Intel, AMD and ARM processors. FusedMM speeds up an end-to-end graph embedding algorithm by up to 28x on different processors. The source code is available at https://github.com/HipGraph/FusedMM.
引用
收藏
页码:256 / 266
页数:11
相关论文
共 50 条
  • [1] Influence maximization in social networks using graph embedding and graph neural network
    Kumar, Sanjay
    Mallik, Abhishek
    Khetarpal, Anavi
    Panda, B. S.
    INFORMATION SCIENCES, 2022, 607 : 1617 - 1636
  • [2] Co-Embedding of Nodes and Edges With Graph Neural Networks
    Jiang, Xiaodong
    Zhu, Ronghang
    Ji, Pengsheng
    Li, Sheng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (06) : 7075 - 7086
  • [3] Scalable Global Alignment Graph Kernel Using Random Features: From Node Embedding to Graph Embedding
    Wu, Lingfei
    Yen, Ian En-Hsu
    Zhang, Zhen
    Xu, Kun
    Zhao, Liang
    Peng, Xi
    Xia, Yinglong
    Aggarwal, Charu
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1418 - 1428
  • [4] StrucGCN: Structural enhanced graph convolutional networks for graph embedding
    Zhang, Jie
    Li, Mingxuan
    Xu, Yitai
    He, Hua
    Li, Qun
    Wang, Tao
    INFORMATION FUSION, 2025, 117
  • [5] Semisupervised Graph Neural Networks for Graph Classification
    Xie, Yu
    Liang, Yanfeng
    Gong, Maoguo
    Qin, A. K.
    Ong, Yew-Soon
    He, Tiantian
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (10) : 6222 - 6235
  • [6] Modern Hopfield Networks for graph embedding
    Liang, Yuchen
    Krotov, Dmitry
    Zaki, Mohammed J.
    FRONTIERS IN BIG DATA, 2022, 5
  • [7] MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding
    Fu, Xinyu
    Zhang, Jiani
    Men, Ziqiao
    King, Irwin
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 2331 - 2341
  • [8] GPENs: Graph Data Learning With Graph Propagation-Embedding Networks
    Jiang, Bo
    Wang, Leiling
    Cheng, Jian
    Tang, Jin
    Luo, Bin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (08) : 3925 - 3938
  • [9] Heterogeneous graph neural networks with denoising for graph embeddings
    Dong, Xinrui
    Zhang, Yijia
    Pang, Kuo
    Chen, Fei
    Lu, Mingyu
    KNOWLEDGE-BASED SYSTEMS, 2022, 238
  • [10] Cybersecurity Knowledge Graph Improvement with Graph Neural Networks
    Dasgupta, Soham
    Piplai, Aritran
    Ranade, Priyanka
    Joshi, Anupam
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 3290 - 3297