A multiplicative comparison of Mac Lane homology and topological Hochschild homology

被引:2
作者
Horel, Geoffroy [1 ]
Ramzi, Maxime [2 ,3 ]
机构
[1] Univ Sorbonne Paris Nord, Villetaneuse, France
[2] Univ Copenhagen, Dept Math Sci, Copenhagen, Denmark
[3] Ecole Normale Super, Paris, France
关键词
Mac Lane homology; Hochschild homology; topological Hochschild homology; Q-construction; MACLANE HOMOLOGY;
D O I
10.2140/akt.2021.6.571
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Q denote Mac Lane's Q-construction and circle times the smash product of spectra. We construct an equivalence Q(R) similar or equal to Z circle times R in the category of A(infinity) ring spectra for any ring R, thus proving a conjecture of Fiedorowicz, Pirashvili, Schwanzl, Vogt and Waldhausen. More precisely, we construct a symmetric monoidal structure on Q (in the infinity-categorical sense) extending the usual monoidal structure, for which we prove an equivalence Q (-) similar or equal to Z circle times- as symmetric monoidal functors. From this, we obtain a new proof of the equivalence HML(R,M) similar or equal to THH (R,M) originally proved by Pirashvili and Waldhausen. This equivalence is in fact made symmetric monoidal, and so it also provides a proof of the equivalence HML(R) similar or equal to THH (R) as E-infinity ring spectra, when R is a commutative ring.
引用
收藏
页码:571 / 605
页数:35
相关论文
共 17 条
[1]   Algebraic theories in homotopy theory [J].
Badzioch, B .
ANNALS OF MATHEMATICS, 2002, 155 (03) :895-913
[2]  
Elmendorf A. D., 1997, MATH SURVEY MONOGRAP, V47
[3]   MACLANE HOMOLOGY AND TOPOLOGICAL HOCHSCHILD HOMOLOGY [J].
FIEDOROWICZ, Z ;
PIRASHVILI, T ;
SCHWANZL, R ;
VOGT, R ;
WALDHAUSEN, F .
MATHEMATISCHE ANNALEN, 1995, 303 (01) :149-164
[4]   Day convolution for ∞-categories [J].
Glasman, Saul .
MATHEMATICAL RESEARCH LETTERS, 2016, 23 (05) :1369-1385
[5]   Calculus III: Taylor series [J].
Goodwillie, TG .
GEOMETRY & TOPOLOGY, 2003, 7 :645-711
[6]  
Hinich V, 2015, DOC MATH, V20, P879
[7]   COHOMOLOGY OF ALGEBRAIC THEORIES [J].
JIBLADZE, M ;
PIRASHVILI, T .
JOURNAL OF ALGEBRA, 1991, 137 (02) :253-296
[8]   Linearization, Dold-Puppe stabilization, and MacLane's Q-construction [J].
Johnson, B ;
McCarthy, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (04) :1555-1593
[9]  
Kuhn N.J., 2007, GEOM TOPOL MONOGR, V10, P245, DOI DOI 10.2140/GTM.2007.10.245
[10]  
LODAY JL, 1998, GRUNDL MATH WISSEN, V301