On stochastic evolutions and superconformal field theory

被引:9
作者
Nagi, J
Rasmussen, J
机构
[1] Univ Cambridge, DAMTP, Cambridge CB3 0WA, England
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
关键词
stochastic evolutions; superconformal field theory; superspace;
D O I
10.1016/j.nuclphysb.2004.10.003
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Links between certain stochastic evolutions of conformal maps and conformal field theory have been studied in the realm of SLE and by utilizing singular vectors in highest-weight modules of the Virasoro algebra. It was recently found that this scenario could be extended to stochastic evolutions of superconformal maps of N = 1 superspace with links to superconformal field theory and singular vectors of the N = 1 superconformal algebra in the Neveu-Schwarz sector. Here we discuss the analogous extension to the Ramond sector. We also discuss how the links are modified when an unconventional superconformal structure or superderivative, is employed. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:475 / 489
页数:15
相关论文
共 15 条
[1]   Conformal field theories of stochastic Loewner evolutions [J].
Bauer, M ;
Bernard, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 239 (03) :493-521
[2]   SLEκ growth processes and conformal field theories [J].
Bauer, M ;
Bernard, D .
PHYSICS LETTERS B, 2002, 543 (1-2) :135-138
[3]   The definition of Neveu-Schwarz superconformal fields and uncharged superconformal transformations [J].
Dörrzapf, M .
REVIEWS IN MATHEMATICAL PHYSICS, 1999, 11 (02) :137-169
[4]  
FRIEDERICH R, MATHPH0301018
[5]  
KAC VG, 1989, STRINGS, V88, P77
[6]   Values of Brownian intersection exponents III: Two-sided exponents [J].
Lawler, GF ;
Schramm, O ;
Werner, W .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2002, 38 (01) :109-123
[7]   Values of Brownian intersection exponents, II: Plane exponents [J].
Lawler, GF ;
Schramm, O ;
Werner, W .
ACTA MATHEMATICA, 2001, 187 (02) :275-308
[8]   Values of Brownian intersection exponents, I: Half-plane exponents [J].
Lawler, GF ;
Schramm, O ;
Werner, W .
ACTA MATHEMATICA, 2001, 187 (02) :237-273
[9]  
LAWLER GF, MATHPR0209343
[10]   SLE-type growth processes and the Yang-Lee singularity [J].
Lesage, F ;
Rasmussen, J .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (08) :3040-3048