Adiabatic entangling gate of Bose-Einstein condensates based on the minimum function

被引:8
作者
Ortiz, Sergi [1 ,2 ,3 ,4 ]
Song, Yilun [2 ]
Wu, June [2 ,5 ]
Ivannikov, Valentin [1 ,2 ]
Byrnes, Tim [1 ,2 ,3 ,6 ,7 ]
机构
[1] East China Normal Univ, Sch Phys & Mat Sci, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
[2] New York Univ Shanghai, 1555 Century Ave, Shanghai 200122, Peoples R China
[3] Natl Inst Informat, Chiyoda Ku, 2-1-2 Hitotsubashi, Tokyo 1018430, Japan
[4] Univ Politecn Cataluna, 31 Jordi Girona, Barcelona 08034, Spain
[5] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[6] NYU Shanghai, NYU ECNU Inst Phys, 3663 Zhongshan Rd North, Shanghai 200062, Peoples R China
[7] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA
基金
中国国家自然科学基金;
关键词
QUANTUM TELEPORTATION; ENTANGLEMENT; STATES; CHIP; INFORMATION; METROLOGY; OBJECTS; CAVITY;
D O I
10.1103/PhysRevA.98.043616
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A scheme is presented to perform an entangling gate between two atomic ensembles or Bose-Einstein condensates in a optical cavity with a common optical mode. The method involves using a generalized stimulated Raman adiabatic passage (STIRAP) to adiabatically evolve the ground state. We show that dark states exist for any atom number within the cavities and find that the operation produces an unusual type of evolution where the minimum of the number of atoms between two level transitions to another state. This produces an unconventional type of entangling Hamiltonian which creates a phase depending on the minimum operation. We analyze its reliability under a variety of conditions ranging from the ideal decoherence- free case to that including photon loss and spontaneous emission. Ways of combating decoherence are analyzed, and the amount of entanglement that is generated is calculated.
引用
收藏
页数:12
相关论文
共 41 条
  • [1] Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps
    Abdelrahman, Ahmed
    Mukai, Tetsuya
    Haeffner, Hartmut
    Byrnes, Tim
    [J]. OPTICS EXPRESS, 2014, 22 (03): : 3501 - 3513
  • [2] Decoherence-free creation of atom-atom entanglement in a cavity via fractional adiabatic passage -: art. no. 012339
    Amniat-Talab, M
    Guérin, S
    Jauslin, HR
    [J]. PHYSICAL REVIEW A, 2005, 72 (01)
  • [3] [Anonymous], 2011, Quantum Computation and Quantum Information: 10th Anniversary Edition
  • [4] Quantum teleportation between remote atomic-ensemble quantum memories
    Bao, Xiao-Hui
    Xu, Xiao-Fan
    Li, Che-Ming
    Yuan, Zhen-Sheng
    Lu, Chao-Yang
    Pan, Jian-Wei
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (50) : 20347 - 20351
  • [5] INTRODUCING GLOBAL CONSTRAINTS IN CHIP
    BELDICEANU, N
    CONTEJEAN, E
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1994, 20 (12) : 97 - 123
  • [6] Coherent population transfer among quantum states of atoms and molecules
    Bergmann, K
    Theuer, H
    Shore, BW
    [J]. REVIEWS OF MODERN PHYSICS, 1998, 70 (03) : 1003 - 1025
  • [8] Quantum machine learning
    Biamonte, Jacob
    Wittek, Peter
    Pancotti, Nicola
    Rebentrost, Patrick
    Wiebe, Nathan
    Lloyd, Seth
    [J]. NATURE, 2017, 549 (7671) : 195 - 202
  • [9] Brand S, 2003, LECT NOTES COMPUT SC, V2833, P795
  • [10] Macroscopic quantum information processing using spin coherent states
    Byrnes, Tim
    Rosseau, Daniel
    Khosla, Megha
    Pyrkov, Alexey
    Thomasen, Andreas
    Mukai, Tetsuya
    Koyama, Shinsuke
    Abdelrahman, Ahmed
    Ilo-Okeke, Ebubechukwu
    [J]. OPTICS COMMUNICATIONS, 2015, 337 : 102 - 109