Neumann problem for reaction-diffusion systems with nonlocal nonlinear sources

被引:11
作者
Xiang, ZY
Hu, XG
Mu, CL
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
[2] China W Normal Univ, Dept Math, Nanchong 637002, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
diffusion system; nonlocal source; global existence and blowup; blow-up estimates;
D O I
10.1016/j.na.2005.01.098
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the Neumann problem for several types of systems with nonlocal nonlinear terms. We first give the blow-up conditions. And then, for the blow-up solution, we establish the precise blow-up estimates and show the blow-up set is the whole region. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1209 / 1224
页数:16
相关论文
共 19 条
[1]  
Bebernes J., 1989, MATH PROBLEMS COMBUS
[2]  
BIMPONGB.K, 1974, J CHEM PHYS, V60, P3124, DOI 10.1063/1.1681498
[3]   A CLASS OF NON-LINEAR NON-CLASSICAL PARABOLIC EQUATIONS [J].
CANNON, JR ;
YIN, HM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 79 (02) :266-288
[4]  
Chadam J.M., 1989, J INTEGRAL EQUAT, V2, P31
[5]   THE BLOWUP PROPERTY OF SOLUTIONS TO SOME DIFFUSION-EQUATIONS WITH LOCALIZED NONLINEAR REACTIONS [J].
CHADAM, JM ;
PEIRCE, A ;
YIN, HM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 169 (02) :313-328
[6]  
Dolcetta IC, 1986, ANN SCUOLA NORM SU S, V13, P689
[7]  
Friedman A., 1964, Partial Differential Equations of Parabolic Type
[8]  
Li FC, 2003, DISCRETE CONT DYN-A, V9, P1519
[9]   Asymptotic behavior of solution for nonlocal reaction-diffusion system [J].
Li, FC ;
Chen, YP ;
Xie, CH .
ACTA MATHEMATICA SCIENTIA, 2003, 23 (02) :261-273
[10]   LOCAL STRUCTURES IN CHEMICAL REACTIONS WITH HETEROGENEOUS CATALYSIS [J].
ORTOLEVA, P ;
ROSS, J .
JOURNAL OF CHEMICAL PHYSICS, 1972, 56 (09) :4397-&