Generalized stability of multi-additive mappings

被引:86
作者
Cieplinski, Krzysztof [1 ]
机构
[1] Pedag Univ, Inst Math, PL-30084 Krakow, Poland
关键词
Stability; Multi-additive mapping; ULAM-RASSIAS STABILITY; FUNCTIONAL-EQUATION; NORMED SPACES;
D O I
10.1016/j.aml.2010.06.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we unify the system of Cauchy functional equations defining multi-additive mapping to obtain a single equation and prove the generalized Hyers-Ulam stability both of this system and this equation using the so-called direct method. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1291 / 1294
页数:4
相关论文
共 24 条
[1]  
Albert M, 1983, ANN POL MATH, V43, P93, DOI DOI 10.4064/ap-43-1-93-103
[2]  
[Anonymous], 2009, CAUCHYS EQUATION JEN
[3]  
Aoki T., 1950, J. Math. Soc. Japan, V2, P64
[4]  
BADORA R, 1997, INT SER NUMER MATH, V123, P219
[5]   CLASSES OF TRANSFORMATIONS AND BORDERING TRANSFORMATIONS [J].
BOURGIN, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (04) :223-237
[6]   Hyers-Ulam-Rassias stability of Cauchy equation in the space of Schwartz distributions [J].
Chung, JY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 300 (02) :343-350
[7]   ON MULTI-JENSEN FUNCTIONS AND JENSEN DIFFERENCE [J].
Cieplinski, Krzysztof .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (04) :729-737
[8]   Stability of the multi-Jensen equation [J].
Cieplinski, Krzysztof .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (01) :249-254
[9]  
Gajda Z, 1990, ANN POL MATH, V52, P119
[10]  
Gajda Z., 1991, Internat. J. Math. Math. Sci., V14, P431, DOI [10.1155/S016117129100056X, DOI 10.1155/S016117129100056X]