Test of independence in the Farlie-Gumbel-Morgenstern distribution

被引:3
作者
Güven, B [1 ]
机构
[1] Middle E Tech Univ, Dept Stat, TR-06531 Ankara, Turkey
关键词
independence; quadrant dependence; Mellin transform; inversion integral; test function; likelihood ratio; approximated power;
D O I
10.1081/STA-120022707
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the hypotheses; H-0 : theta = 0 vs. H-1 : theta greater than or equal to eta where theta is the dependence parameter of the Farlie-Gumbel-Morgenstren distribution and eta is an element of (0, 1]. A test, which maximizes the minimum power over the alternative hypothesis, is given for these hypotheses. The power function of this test is monotone increasing over the alternative hypothesis. Furthermore, the asymptotic distribution and the approximate power of the test are presented.
引用
收藏
页码:1753 / 1765
页数:13
相关论文
共 50 条
[41]   A non-parametric test for independence of time to failure and cause of failure for discrete competing risks data [J].
Sreedevi, E. P. ;
Kattumannil, Sudheesh K. ;
Dewan, Isha .
STATISTICS, 2021, 55 (05) :1107-1122
[42]   A goodness-of-fit test for the multivariate Poisson distribution [J].
Novoa-Munoz, F. ;
Jimenez-Gamero, M. D. .
SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2016, 40 (01) :113-138
[43]   DECOMPOSITION OF INDEPENDENCE MODEL AND SEPARABILITY OF ITS TEST STATISTIC FOR TWO-WAY CONTINGENCY TABLES WITH ORDERED CATEGORIES [J].
Tomizawa, Sadao ;
Miyamoto, Nobuko ;
Sakurai, Masaya .
ADVANCES AND APPLICATIONS IN STATISTICS, 2008, 8 (02) :209-218
[44]   Likelihood ratio test for the parameters of exponentially modified Gaussian distribution [J].
Jiang, Yuanyuan ;
Xu, Xingzhong .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (08) :3668-3685
[45]   Sample distribution function based goodness-of-fit test for complex surveys [J].
Wang, Jianqiang C. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (03) :664-679
[46]   The complex multinormal distribution, quadratic forms in complex random vectors and an omnibus goodness-of-fit test for the complex normal distribution [J].
Ducharme, Gilles R. ;
de Micheaux, Pierre Lafaye ;
Marchina, Bastien .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2016, 68 (01) :77-104
[47]   The complex multinormal distribution, quadratic forms in complex random vectors and an omnibus goodness-of-fit test for the complex normal distribution [J].
Gilles R. Ducharme ;
Pierre Lafaye de Micheaux ;
Bastien Marchina .
Annals of the Institute of Statistical Mathematics, 2016, 68 :77-104
[48]   ASYMPTOTIC-DISTRIBUTION OF THE LIKELIHOOD RATIO TEST THAT A MIXTURE OF 2 BINOMIALS IS A SINGLE BINOMIAL [J].
CHERNOFF, H ;
LANDER, E .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1995, 43 (1-2) :19-40
[50]   Model Selection and Validation of Extreme Distribution by Goodness-Of-Fit Test Based on Conditional Position [J].
Abidin, Nahdiya Zainal ;
Adam, Mohd Bakri .
STATISTICS AND OPERATIONAL RESEARCH INTERNATIONAL CONFERENCE (SORIC 2013), 2014, 1613 :195-207